AMDDLmodel: Android smartphones malware detection using deep learning model

Android(操作系统) 恶意软件 计算机科学 人工智能 机器学习 深度学习 移动设备 卷积神经网络 移动恶意软件 许可 计算机安全 操作系统 政治学 法学
作者
Muhammad Aamir,Muhammad Waseem Iqbal,Mariam Nosheen,Muhammad Usman Ashraf,Ahmad Shaf,Khalid Ali Almarhabi,Ahmed Mohammed Alghamdi,Adel A. Bahaddad
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (1): e0296722-e0296722
标识
DOI:10.1371/journal.pone.0296722
摘要

Android is the most popular operating system of the latest mobile smart devices. With this operating system, many Android applications have been developed and become an essential part of our daily lives. Unfortunately, different kinds of Android malware have also been generated with these applications' endless stream and somehow installed during the API calls, permission granted and extra packages installation and badly affected the system security rules to harm the system. Therefore, it is compulsory to detect and classify the android malware to save the user's privacy to avoid maximum damages. Many research has already been developed on the different techniques related to android malware detection and classification. In this work, we present AMDDLmodel a deep learning technique that consists of a convolutional neural network. This model works based on different parameters, filter sizes, number of epochs, learning rates, and layers to detect and classify the android malware. The Drebin dataset consisting of 215 features was used for this model evaluation. The model shows an accuracy value of 99.92%. The other statistical values are precision, recall, and F1-score. AMDDLmodel introduces innovative deep learning for Android malware detection, enhancing accuracy and practical user security through inventive feature engineering and comprehensive performance evaluation. The AMDDLmodel shows the highest accuracy values as compared to the existing techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫竹发布了新的文献求助10
刚刚
稳重秋寒发布了新的文献求助10
1秒前
哎咦随风起完成签到,获得积分10
1秒前
严剑封完成签到,获得积分0
2秒前
所所应助zyq采纳,获得10
2秒前
2秒前
无情夏槐完成签到,获得积分10
2秒前
七七完成签到,获得积分10
2秒前
3秒前
共享精神应助ZUTOMAYO采纳,获得10
3秒前
proteinpurify完成签到,获得积分10
4秒前
4秒前
无花果应助chenmingjuan采纳,获得10
4秒前
所所应助ccc采纳,获得10
4秒前
梁大海完成签到,获得积分10
5秒前
Leo完成签到,获得积分10
6秒前
6秒前
寻麓发布了新的文献求助10
6秒前
不安服饰完成签到 ,获得积分10
8秒前
pannyfeng完成签到,获得积分10
9秒前
ash发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
Cherish完成签到,获得积分10
11秒前
actor2006完成签到,获得积分10
12秒前
13秒前
梁大海发布了新的文献求助10
13秒前
科研通AI5应助bai采纳,获得10
13秒前
14秒前
春实秋华发布了新的文献求助10
14秒前
子车一手完成签到,获得积分10
15秒前
7z完成签到,获得积分10
15秒前
16秒前
王逗逗完成签到,获得积分10
16秒前
icerell完成签到,获得积分10
16秒前
17秒前
zhiruo完成签到,获得积分10
17秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821824
求助须知:如何正确求助?哪些是违规求助? 3364322
关于积分的说明 10429080
捐赠科研通 3082949
什么是DOI,文献DOI怎么找? 1695900
邀请新用户注册赠送积分活动 815402
科研通“疑难数据库(出版商)”最低求助积分说明 769127