Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach

计算机科学 机器学习 人工智能 学习迁移 领域(数学分析) 乳腺癌 深度学习 特征(语言学) 数据挖掘 癌症 医学 数学 语言学 内科学 数学分析 哲学
作者
S. Selvakanmani,G Dharani Devi,V. Rekha,J. Jeyalakshmi
标识
DOI:10.1007/s10278-024-01035-8
摘要

Breast cancer is deadly cancer causing a considerable number of fatalities among women in worldwide. To enhance patient outcomes as well as survival rates, early and accurate detection is crucial. Machine learning techniques, particularly deep learning, have demonstrated impressive success in various image recognition tasks, including breast cancer classification. However, the reliance on large labeled datasets poses challenges in the medical domain due to privacy issues and data silos. This study proposes a novel transfer learning approach integrated into a federated learning framework to solve the limitations of limited labeled data and data privacy in collaborative healthcare settings. For breast cancer classification, the mammography and MRO images were gathered from three different medical centers. Federated learning, an emerging privacy-preserving paradigm, empowers multiple medical institutions to jointly train the global model while maintaining data decentralization. Our proposed methodology capitalizes on the power of pre-trained ResNet, a deep neural network architecture, as a feature extractor. By fine-tuning the higher layers of ResNet using breast cancer datasets from diverse medical centers, we enable the model to learn specialized features relevant to different domains while leveraging the comprehensive image representations acquired from large-scale datasets like ImageNet. To overcome domain shift challenges caused by variations in data distributions across medical centers, we introduce domain adversarial training. The model learns to minimize the domain discrepancy while maximizing classification accuracy, facilitating the acquisition of domain-invariant features. We conducted extensive experiments on diverse breast cancer datasets obtained from multiple medical centers. Comparative analysis was performed to evaluate the proposed approach against traditional standalone training and federated learning without domain adaptation. When compared with traditional models, our proposed model showed a classification accuracy of 98.8% and a computational time of 12.22 s. The results showcase promising enhancements in classification accuracy and model generalization, underscoring the potential of our method in improving breast cancer classification performance while upholding data privacy in a federated healthcare environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的舞仙完成签到,获得积分10
刚刚
刚刚
ZQJ发布了新的文献求助10
刚刚
penghui完成签到,获得积分10
1秒前
joyzoo完成签到,获得积分10
1秒前
1秒前
栗子完成签到 ,获得积分10
1秒前
榕树完成签到,获得积分10
2秒前
阿布与小佛完成签到 ,获得积分10
2秒前
Migrol完成签到,获得积分10
2秒前
sss发布了新的文献求助30
2秒前
Childwild完成签到,获得积分10
3秒前
佛了欢喜完成签到,获得积分10
3秒前
flac3d完成签到,获得积分10
4秒前
威仔完成签到,获得积分10
4秒前
xzn1123应助misamo采纳,获得20
4秒前
GingerF应助闵不悔采纳,获得100
5秒前
5秒前
捞鱼完成签到,获得积分10
5秒前
5秒前
秋秋完成签到,获得积分10
6秒前
sun完成签到 ,获得积分10
7秒前
好家伙完成签到,获得积分10
7秒前
末123456完成签到,获得积分10
7秒前
淡定发布了新的文献求助10
7秒前
善学以致用应助chens627采纳,获得10
7秒前
yixuan完成签到,获得积分10
8秒前
小唐完成签到,获得积分10
8秒前
柿子吖完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
鲤鱼羿完成签到,获得积分10
8秒前
赵西里完成签到,获得积分10
9秒前
科研通AI5应助子乔采纳,获得10
9秒前
10秒前
南宫映榕关注了科研通微信公众号
10秒前
111完成签到,获得积分10
10秒前
爱听歌蜗牛完成签到,获得积分10
11秒前
MKY完成签到,获得积分10
12秒前
ChrisKim发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952537
求助须知:如何正确求助?哪些是违规求助? 4215284
关于积分的说明 13112545
捐赠科研通 3997347
什么是DOI,文献DOI怎么找? 2187846
邀请新用户注册赠送积分活动 1203008
关于科研通互助平台的介绍 1115830