An improved transfer learning approach based on geodesic flow kernel for multiphase batch process soft sensor modeling

软传感器 过程(计算) 核(代数) 计算机科学 多相流 测地线 流量(数学) 学习迁移 控制理论(社会学) 控制工程 人工智能 数学 工程类 机械 物理 数学分析 控制(管理) 组合数学 操作系统
作者
Jikun Zhu,Weili Xiong
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:46 (11): 2118-2128 被引量:1
标识
DOI:10.1177/01423312241229965
摘要

For multiphase batch process, the characteristics of process data under various batches differ. Consequently, the soft sensor model built for a particular working condition is inapplicable to other working conditions. Besides, each batch can be divided into several phases whose characteristics are probably different. To address the above problems, a soft sensor model based on phase division and transfer learning strategy is proposed. First, transfer learning strategy is adopted to construct a soft sensor model applicable to various working conditions. Specifically, geodesic flow kernel based on linear local tangent space alignment (LLTSA-GFK) algorithm is designed. By projecting process data to the common manifold subspace, the distribution difference of data between various batches is reduced and the performance of the soft sensor model is enhanced. In addition, sequence-based fuzzy clustering and just-in-time learning (JITL) are adopted to solve the multistage characteristic for batch process. The root-mean-square error ( RMSE), coefficient of determination [Formula: see text], and mean absolute error ( MAE) are adopted to compare the conventional soft sensing approach (i.e., partial least-square regression based on JITL, support vector regression, and back propagation neural network) with the proposed approach. The superiority of the proposed model is verified by a fed-batch penicillin fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kurtlin完成签到,获得积分10
刚刚
缓慢的初兰完成签到,获得积分10
刚刚
刚刚
cyz完成签到,获得积分10
1秒前
1秒前
共享精神应助雪球采纳,获得10
2秒前
zuol发布了新的文献求助10
2秒前
狄从灵发布了新的文献求助30
3秒前
3秒前
3秒前
科研通AI5应助xiaoruirx采纳,获得10
4秒前
4秒前
tans0008完成签到,获得积分10
4秒前
4秒前
最爱吃火锅完成签到,获得积分10
4秒前
5秒前
Winks完成签到,获得积分10
5秒前
yiyi037118发布了新的文献求助10
5秒前
5秒前
聪慧凡松发布了新的文献求助10
6秒前
6秒前
曾经的鸡翅完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
fanfanzzz完成签到 ,获得积分10
9秒前
9秒前
KT发布了新的文献求助10
9秒前
skyline完成签到,获得积分10
10秒前
10秒前
FashionBoy应助斯文明杰采纳,获得10
10秒前
Zz发布了新的文献求助10
11秒前
容与完成签到,获得积分10
11秒前
个性凡儿发布了新的文献求助20
11秒前
OxO发布了新的文献求助10
11秒前
款款发布了新的文献求助10
11秒前
12秒前
Duha完成签到,获得积分10
12秒前
爪子发布了新的文献求助10
12秒前
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Knowledge management in the fashion industry 300
The world according to Garb 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857