Confined fluid interfacial tension and minimum miscibility pressure prediction in shale nanopores

混溶性 表面张力 材料科学 纳米孔 油页岩 张力(地质) 热力学 复合材料 地质学 聚合物 纳米技术 极限抗拉强度 物理 古生物学
作者
Qian Sun,Na Zhang,Peng Zhu,Wei Liu,Lingkong Guo,Shuoran Fu,Aabiskar Bhusal,Shuhua Wang
出处
期刊:Fuel [Elsevier BV]
卷期号:364: 130949-130949 被引量:5
标识
DOI:10.1016/j.fuel.2024.130949
摘要

CO2 miscible flooding is considered to be a cost-effective and efficient method for improving shale oil recovery. The minimum miscibility pressure (MMP) between CO2 and shale oil in nanopores is a crucial parameter for assessing the viability of miscible flooding. Experimental methods are often inadequate for capturing phase transition behaviors at the nanoscale. Therefore, it is essential to establish a comprehensive theoretical model to explore the phase behavior and miscibility of fluids confined in nanopores. Besides, the real shale formations have highly heterogeneous pore spaces, where the effect of pore size distribution on the MMP prediction should be properly addressed. In this research, a thermodynamic model that accounts for the nano-confinement effect is proposed to describe the interfacial tensions (IFTs) and MMPs profiles based on the vanishing interfacial tension (VIT) method. Firstly, a modified Peng-Robinson equation of state (PR-EOS) was employed for the vapor–liquid equilibrium (VLE) calculations at the nanopores by considering the capillary pressure effect and critical properties shift. Secondly, the model validation and the effect of temperature, pore radius, alkane type, and injected gas components on IFTs and MMPs were launched to analyze the nano-confinement effect. Finally, the model was applied to real shale oil to explore how pore size distribution affected the MMP in nanopores. The simulation results show that IFTs and MMPs calculated by the proposed model match very well with the experimental and molecular dynamic simulation (MD) results. The critical properties shift is the main cause for IFT and MMP reduction compared with capillary pressure. The MMPs of CO2-alkanes initially increase and then decrease with increasing temperature in nanopores. The IFTs and MMPs increase with pore radius, carbon number of alkanes. However, the IFTs and MMPs become less sensitive to pore size when the pore radius exceeds 15 nm. Higher C2H6 & C3H8 mole fractions decrease the MMP of confined fluids, while higher CH4 mole fraction increases MMP. The MMPs calculated by considering the pore size distribution are lower than those calculated using the average pore radius. Therefore, the mixing rule should be considered when the pore size distribution is provided. We hope this model can give a more precise depiction of fluid phase behaviors in shale reservoirs, thereby facilitating the development of shale oil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang0626完成签到 ,获得积分10
3秒前
科目三应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
猫咪老师应助科研通管家采纳,获得30
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
Orange应助闵不悔采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
12秒前
14秒前
独特的尔风完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
Kai完成签到,获得积分10
19秒前
凡`发布了新的文献求助10
19秒前
20秒前
PSQ完成签到,获得积分10
26秒前
是龙龙呀发布了新的文献求助10
28秒前
凡`完成签到,获得积分10
28秒前
可乐加冰完成签到,获得积分10
29秒前
科研通AI5应助君齐采纳,获得10
29秒前
小白应助lelehanhan采纳,获得20
32秒前
33秒前
36秒前
ysy发布了新的文献求助10
39秒前
43秒前
加菲丰丰举报求助违规成功
45秒前
Singularity举报求助违规成功
45秒前
916举报求助违规成功
45秒前
45秒前
烟花应助wowser采纳,获得10
45秒前
量子星尘发布了新的文献求助30
49秒前
8R60d8完成签到,获得积分0
52秒前
yanyuqing完成签到,获得积分20
52秒前
RATHER完成签到,获得积分10
52秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864358
求助须知:如何正确求助?哪些是违规求助? 3406684
关于积分的说明 10650930
捐赠科研通 3130640
什么是DOI,文献DOI怎么找? 1726523
邀请新用户注册赠送积分活动 831767
科研通“疑难数据库(出版商)”最低求助积分说明 780009