WOx channel engineering of Cu-ion-driven synaptic transistor array for low-power neuromorphic computing

材料科学 晶体管 光电子学 神经形态工程学 计算机科学 MNIST数据库 频道(广播) 人工神经网络 电压 纳米技术 电气工程 电子工程 电信 工程类 人工智能
作者
Seonuk Jeon,Heebum Kang,Hyunjeong Kwak,Kyungmi Noh,Seungkun Kim,Nayeon Kim,Hyun Kim,Eunryeong Hong,Seyoung Kim,Jiyong Woo
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1): 22111-22111 被引量:7
标识
DOI:10.1038/s41598-023-49251-6
摘要

Abstract The multilevel current states of synaptic devices in artificial neural networks enable next-generation computing to perform cognitive functions in an energy-efficient manner. Moreover, considering large-scale synaptic arrays, multiple states programmed in a low-current regime may be required to achieve low energy consumption, as demonstrated by simple numerical calculations. Thus, we propose a three-terminal Cu-ion-actuated CuO x /HfO x /WO 3 synaptic transistor array that exhibits analogously modulated channel current states in the range of tens of nanoamperes, enabled by WO 3 channel engineering. The introduction of an amorphous stoichiometric WO 3 channel formed by reactive sputtering with O gas significantly lowered the channel current but left it almost unchanged with respect to consecutive gate voltage pulses. An additional annealing process at 450 °C crystallized the WO 3 , allowing analog switching in the range of tens of nanoamperes. The incorporation of N gas during annealing induced a highly conductive channel, making the channel current modulation negligible as a function of the gate pulse. Using this optimized gate stack, Poole–Frenkel conduction was identified as a major transport characteristic in a temperature-dependent study. In addition, we found that the channel current modulation is a function of the gate current response, which is related to the degree of progressive movement of the Cu ions. Finally, the synaptic characteristics were updated using fully parallel programming and demonstrated in a 7 × 7 array. Using the CuO x /HfO x /WO 3 synaptic transistors as weight elements in multilayer neural networks, we achieved a 90% recognition accuracy on the Fashion-MNIST dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
糖糖完成签到,获得积分20
1秒前
1秒前
2秒前
华仔应助成就的安阳采纳,获得10
2秒前
3秒前
4秒前
6秒前
彩色伊关注了科研通微信公众号
7秒前
8秒前
明理的道天完成签到 ,获得积分10
8秒前
皛鱼发布了新的文献求助10
8秒前
雪白的白桃完成签到,获得积分10
8秒前
李爱国应助啦啦啦采纳,获得10
8秒前
王浩完成签到,获得积分10
9秒前
小冬瓜完成签到,获得积分10
10秒前
浮游应助aaron_hill采纳,获得10
10秒前
10秒前
fan发布了新的文献求助10
11秒前
yuan完成签到,获得积分10
12秒前
王浩发布了新的文献求助10
13秒前
在水一方应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得30
16秒前
ding应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457292
求助须知:如何正确求助?哪些是违规求助? 4563793
关于积分的说明 14291406
捐赠科研通 4488476
什么是DOI,文献DOI怎么找? 2458514
邀请新用户注册赠送积分活动 1448579
关于科研通互助平台的介绍 1424214