斩波器
频率补偿
电子工程
电容器
相位裕度
CMOS芯片
带宽(计算)
电阻器
电气工程
电压
放大器
工程类
偏移量(计算机科学)
控制理论(社会学)
电源抑制比
运算放大器
计算机科学
电信
控制(管理)
人工智能
程序设计语言
作者
Xingguo Fan,Feifan Gao,P.K. Chan
出处
期刊:Sensors
[Multidisciplinary Digital Publishing Institute]
日期:2023-12-13
卷期号:23 (24): 9808-9808
被引量:2
摘要
This paper presents a low-voltage low-power chopper-stabilized differential difference amplifier (DDA) realized using 40 nm CMOS technology. Operating with a supply voltage of 0.5 V, a three-stage DDA has been employed to achieve an open-loop gain of 89 dB, while consuming just 0.74 μW of power. The proposed DDA incorporates feed-forward frequency compensation and a Type II compensator to achieve pole-zero cancellation and damping factor control. The DDA has a unity-gain bandwidth (UGB) of 170 kHz, a phase margin (PM) of 63.98°, and a common-mode rejection ratio (CMRR) of up to 100 dB. This circuit can effectively drive a 50 pF capacitor in parallel with a 300 kΩ resistor. The use of the chopper stabilization technique effectively mitigates the offset and 1/f noise. The chopping frequency of the chopper modulator is 5 kHz. The input noise is 245 nV/sqrt (Hz) at 1 kHz, and the input-referred offset under Monte Carlo cases is only 0.26 mV. Such a low-voltage chopper-stabilized DDA will be very useful for analog signal processing applications. Compared to the reported chopper DDA counterparts, the proposed DDA is regarded as that with one of the lowest supply voltages. The proposed DDA has demonstrated its effectiveness in tradeoff design when dealing with multiple parameters pertaining to power consumption, noise, and bandwidth.
科研通智能强力驱动
Strongly Powered by AbleSci AI