Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:17
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助hahhahahh采纳,获得10
1秒前
自然代萱发布了新的文献求助10
1秒前
动漫大师发布了新的文献求助10
2秒前
2秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
hahhahahh完成签到,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
啦啦啦发布了新的文献求助10
6秒前
JamesPei应助顾小花采纳,获得10
7秒前
kikiL完成签到 ,获得积分10
8秒前
李大壮发布了新的文献求助30
9秒前
一二发布了新的文献求助10
10秒前
13秒前
hahhahahh发布了新的文献求助10
16秒前
16秒前
充电宝应助自然代萱采纳,获得10
16秒前
科研通AI5应助小学生库里采纳,获得10
16秒前
17秒前
18秒前
似水流年发布了新的文献求助10
21秒前
zcl发布了新的文献求助10
21秒前
Firstoronre发布了新的文献求助30
25秒前
搜集达人应助lyx采纳,获得10
25秒前
29秒前
30秒前
xrhk完成签到,获得积分10
31秒前
所所应助似水流年采纳,获得10
31秒前
CipherSage应助一二采纳,获得10
32秒前
33秒前
xrhk发布了新的文献求助10
34秒前
种桃老总发布了新的文献求助10
35秒前
carl发布了新的文献求助10
37秒前
科研通AI5应助carl采纳,获得10
44秒前
kfbcj完成签到 ,获得积分10
47秒前
49秒前
pluto应助缺粥采纳,获得10
49秒前
所所应助跪求采纳,获得10
52秒前
Ava应助优秀藏鸟采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549