Materiality and Risk in the Age of Pervasive AI Sensors

重要性(审计) 艺术 美学
作者
Matthew Stewart,Emanuel Moss,Pete Warden,Brian Plancher,Susan Kennedy,Mona Sloane,Vijay Janapa Reddi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.11183
摘要

Artificial intelligence systems connected to sensor-laden devices are becoming pervasive, which has significant implications for a range of AI risks, including to privacy, the environment, autonomy, and more. There is therefore a growing need for increased accountability around the responsible development and deployment of these technologies. In this paper, we provide a comprehensive analysis of the evolution of sensors, the risks they pose by virtue of their material existence in the world, and the impacts of ubiquitous sensing and on-device AI. We propose incorporating sensors into risk management frameworks and call for more responsible sensor and system design paradigms that address risks of such systems. To do so, we trace the evolution of sensors from analog devices to intelligent, networked systems capable of real-time data analysis and decision-making at the extreme edge of the network. We show that the proliferation of sensors is driven by calculative models that prioritize data collection and cost reduction and produce risks that emerge around privacy, surveillance, waste, and power dynamics. We then analyze these risks, highlighting issues of validity, safety, security, accountability, interpretability, and bias. We surface sensor-related risks not commonly captured in existing approaches to AI risk management, using a materiality lens that reveals how physical sensor properties shape data and algorithmic models. We conclude by advocating for increased attention to the materiality of algorithmic systems, and of on-device AI sensors in particular, and highlight the need for development of a responsible sensor design paradigm that empowers users and communities and leads to a future of increased fairness, accountability and transparency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
愉快的乐双完成签到 ,获得积分10
7秒前
饱满的大碗完成签到 ,获得积分10
8秒前
木之尹完成签到 ,获得积分10
8秒前
8秒前
善学以致用应助韩hqf采纳,获得10
9秒前
du发布了新的文献求助10
9秒前
tian发布了新的文献求助10
10秒前
终生科研徒刑完成签到 ,获得积分10
12秒前
VDC发布了新的文献求助10
12秒前
一棵草完成签到,获得积分10
12秒前
snow完成签到 ,获得积分10
13秒前
YSY完成签到,获得积分10
13秒前
14秒前
tender完成签到,获得积分10
16秒前
JamesPei应助吴1采纳,获得10
17秒前
learnerZ_2023完成签到,获得积分10
18秒前
多科特张完成签到,获得积分10
18秒前
华仔应助tian采纳,获得10
18秒前
李健应助勤恳的绿凝采纳,获得10
19秒前
共享精神应助成太采纳,获得10
19秒前
19秒前
研友_VZG7GZ应助du采纳,获得10
19秒前
冰魂应助hcasdgchadcgawhu采纳,获得20
20秒前
22秒前
22秒前
潜山耕之完成签到,获得积分10
24秒前
27秒前
27秒前
吴1发布了新的文献求助10
28秒前
冷静的若枫完成签到 ,获得积分10
28秒前
RICK完成签到,获得积分10
28秒前
花盛完成签到,获得积分10
29秒前
du完成签到,获得积分10
30秒前
Wei应助Aurora.H采纳,获得10
31秒前
33秒前
所所应助吴1采纳,获得10
33秒前
成太发布了新的文献求助10
33秒前
韩hqf发布了新的文献求助10
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780984
求助须知:如何正确求助?哪些是违规求助? 3326419
关于积分的说明 10227236
捐赠科研通 3041655
什么是DOI,文献DOI怎么找? 1669535
邀请新用户注册赠送积分活动 799095
科研通“疑难数据库(出版商)”最低求助积分说明 758734