表皮生长因子受体
无线电技术
肺癌
医学
癌症研究
酪氨酸激酶
肿瘤科
突变
癌症
计算生物学
内科学
受体
生物
放射科
基因
遗传学
作者
Xiaohui Yao,Yuan Zhu,Zhenxing Huang,Yue Wang,Shan Cong,Liwen Wan,Ruodai Wu,Long Chen,Zhanli Hu
标识
DOI:10.21037/qims-23-1028
摘要
Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor-sensitizing (EGFR-sensitizing) mutations exhibit a positive response to tyrosine kinase inhibitors (TKIs). Given the limitations of current clinical predictive methods, it is critical to explore radiomics-based approaches. In this study, we leveraged deep-learning technology with multimodal radiomics data to more accurately predict EGFR-sensitizing mutations.
科研通智能强力驱动
Strongly Powered by AbleSci AI