亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive phage therapy for Escherichia coli urinary tract infections: Cocktail selection for therapy based on machine learning models

大肠杆菌 噬菌体疗法 抗生素耐药性 基因组 微生物学 抗生素 计算生物学 生物 噬菌体 遗传学 基因
作者
Marianne Keith,Alba Park de la Torriente,Salvatore Camiolo,Adriana Vallejo-Trujillo,Sean P. McAteer,Gavin K. Paterson,Alison S. Low,David L. Gally
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (12) 被引量:4
标识
DOI:10.1073/pnas.2313574121
摘要

This study supports the development of predictive bacteriophage (phage) therapy: the concept of phage cocktail selection to treat a bacterial infection based on machine learning (ML) models. For this purpose, ML models were trained on thousands of measured interactions between a panel of phage and sequenced bacterial isolates. The concept was applied to Escherichia coli associated with urinary tract infections. This is an important common infection in humans and companion animals from which multidrug-resistant (MDR) bloodstream infections can originate. The global threat of MDR infection has reinvigorated international efforts into alternatives to antibiotics including phage therapy. E. coli exhibit extensive genome-level variation due to horizontal gene transfer via phage and plasmids. Associated with this, phage selection for E. coli is difficult as individual isolates can exhibit considerable variation in phage susceptibility due to differences in factors important to phage infection including phage receptor profiles and resistance mechanisms. The activity of 31 phage was measured on 314 isolates with growth curves in artificial urine. Random Forest models were built for each phage from bacterial genome features, and the more generalist phage, acting on over 20% of the bacterial population, exhibited F1 scores of >0.6 and could be used to predict phage cocktails effective against previously untested strains. The study demonstrates the potential of predictive ML models which integrate bacterial genomics with phage activity datasets allowing their use on data derived from direct sequencing of clinical samples to inform rapid and effective phage therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
Huzhu应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
34秒前
36秒前
42秒前
balko完成签到,获得积分10
53秒前
59秒前
1分钟前
完美世界应助阿巴采纳,获得10
1分钟前
1分钟前
1分钟前
香蕉觅云应助小兔子采纳,获得10
2分钟前
2分钟前
2分钟前
Huzhu应助科研通管家采纳,获得10
2分钟前
hanawang应助科研通管家采纳,获得10
2分钟前
小兔子发布了新的文献求助10
2分钟前
852应助烛夜黎采纳,获得10
2分钟前
Cherry完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
momo发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
CheetahAzure发布了新的文献求助10
4分钟前
CheetahAzure完成签到,获得积分10
4分钟前
hanawang应助科研通管家采纳,获得10
4分钟前
4分钟前
keke发布了新的文献求助10
4分钟前
hhj发布了新的文献求助30
4分钟前
英姑应助keke采纳,获得10
4分钟前
4分钟前
momo发布了新的文献求助10
4分钟前
JamesPei应助hhj采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505