Electrochemical–mechanical coupled model for computationally efficient prediction of long-term capacity fade of lithium-ion batteries

淡出 期限(时间) 锂(药物) 电化学 离子 锂离子电池 材料科学 环境科学 电池(电) 核工程 计算机科学 化学 工程类 热力学 物理 电极 功率(物理) 医学 有机化学 物理化学 量子力学 内分泌学 操作系统
作者
Kwangrae Kim,Gyeonghwan Lee,Huiyong Chun,Jongchan Baek,Hyeonjang Pyeon,Minho Kim,Soohee Han
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:86: 111224-111224
标识
DOI:10.1016/j.est.2024.111224
摘要

This paper proposes a novel physics-based (electrochemical–mechanical coupled) capacity fade model called the inhomogeneous stress-induced fracture (ISIF) model based on electrochemical and mechanical degradation mechanisms. The ISIF model models the mechanical fatigue fracture of cathode particles, which is a key aging mechanism that contributes to nonlinear aging observed in various studies. Through this approach, the ISIF model can accurately predict long-term capacity degradation, including the region of capacity loss below 80% of the initial capacity, without the need for time-consuming calculations, unlike electrochemical-based models. Additionally, the ISIF model can predict the knee point phenomenon, where there is a sudden decrease in capacity in the later-stages of battery life. We also propose a hybrid model called SVD-ISIF model that combines the ISIF model with a data-driven method called sparse variational dropout Bayesian neural network (SVDBNN) to improve accuracy and data efficiency especially when experimental data and computational resources are abundant, which helps users flexibly choose the optimal method for various situations. The proposed method was validated using experimental long-term capacity fading data from commercial 2170 NMC cells over a wide range of cycles (3000 to 20,000) that have not been studied before, because of the difficulties of conducting long-term aging cycle experiments and reproducing the knee point, to the knowledge of the authors. Both the ISIF model and the SVD-ISIF model accurately predict the long-term capacity reduction trend, including the knee point, with a mean absolute error is around or less than 2% for all data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
啾啾发布了新的文献求助20
2秒前
3秒前
3秒前
果冻完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
星辰大海应助My采纳,获得10
5秒前
鲤鱼月饼完成签到 ,获得积分10
6秒前
6秒前
於菟发布了新的文献求助20
6秒前
壮观的不评完成签到 ,获得积分10
7秒前
科研通AI5应助罗逸采纳,获得10
7秒前
派大星完成签到,获得积分10
7秒前
解不言发布了新的文献求助10
8秒前
苹果尔柳发布了新的文献求助10
8秒前
Yunis完成签到,获得积分10
8秒前
Yi1完成签到,获得积分20
8秒前
wanci应助美味蟹黄堡采纳,获得10
8秒前
abcdefg发布了新的文献求助10
9秒前
Hello应助最牛的kangkang采纳,获得10
10秒前
鹿阿布发布了新的文献求助20
10秒前
月饼同学发布了新的文献求助10
10秒前
科研通AI5应助LLL采纳,获得10
12秒前
能干的山灵应助华姝采纳,获得10
13秒前
13秒前
13秒前
swb完成签到,获得积分10
14秒前
15秒前
gaobowang完成签到,获得积分10
15秒前
15秒前
万物更始完成签到,获得积分10
16秒前
科研通AI5应助你才是冰雕采纳,获得10
16秒前
wave发布了新的文献求助10
16秒前
ling完成签到,获得积分10
17秒前
派大星发布了新的文献求助10
17秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785428
求助须知:如何正确求助?哪些是违规求助? 3330961
关于积分的说明 10249349
捐赠科研通 3046441
什么是DOI,文献DOI怎么找? 1672000
邀请新用户注册赠送积分活动 800943
科研通“疑难数据库(出版商)”最低求助积分说明 759905