Physics-Guided Multi-Agent Deep Reinforcement Learning for Robust Active Voltage Control in Electrical Distribution Systems

强化学习 光伏系统 电压 计算机科学 控制理论(社会学) 节点(物理) 控制(管理) 电子工程 工程类 人工智能 电气工程 结构工程
作者
Pengcheng Chen,Shichao Liu,Xiaozhe Wang,Innocent Kamwa
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 922-933 被引量:4
标识
DOI:10.1109/tcsi.2023.3340691
摘要

Although several multi-agent deep reinforcement learning (MADRL) algorithms have been employed in power distribution networks configured with high penetration level of Photovoltaic (PV) generators for active voltage control (AVC), the impact of the voltage fluctuation of a single PV node on voltage violations of other PV nodes in the network is ignored. Consequently, it leads to the conservativeness of the existing MADRL based AVC algorithms. In this paper, a robust MADRL control algorithm is designed to minimize the nodal voltage violation and line loss with the exploration of coupling voltage fluctuations across all the controlled nodes by coordinating PV inverters, and a physics factor is utilized to guide (physics-guided) the training policy with the expectation of a better performance compared to existing purely data-driven methods. In the proposed physics-guided multi-agent adversarial twin delayed deep deterministic (PG-MA2TD3) policy gradient algorithm, a physics factor, global sensitivity of voltage (GSV), is properly embedded in the algorithm to measure the influence of the nodal voltage fluctuation on voltage violations on the other controlled nodes with PV inverters and this GSV is shared in the learning center to guide the centralized learning and decentralized execution process. The multi-agent adversarial learning (MAAL) embedded with the GSV to seek an adaptive descend gradient for reducing the Q-value function appropriately rather than always assuming the worst case. Therefore, this physics-guided method can reduce the conservation and provide significantly better reward. Finally, the proposed algorithm is compared with several other methods on IEEE 33-bus, 141-bus and 322-bus with three-year data in Portuguese and the results indicate the proposed method can obtain the minimal voltage fluctuation and the best reward in the comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊熊面包应助mm采纳,获得10
刚刚
英俊的铭应助YY采纳,获得10
1秒前
积极的汽车完成签到,获得积分10
1秒前
温暖的问候完成签到,获得积分10
2秒前
LIU完成签到,获得积分10
2秒前
3秒前
minggalaxy007发布了新的文献求助10
4秒前
JXDYYZK完成签到,获得积分10
5秒前
6秒前
7秒前
zzzb发布了新的文献求助10
8秒前
mc应助zhanwenlin采纳,获得10
8秒前
10秒前
11秒前
imagine完成签到,获得积分10
11秒前
猪肉超人菜婴蚊完成签到,获得积分10
11秒前
7弥LY关注了科研通微信公众号
13秒前
李十七完成签到,获得积分10
14秒前
MJ发布了新的文献求助100
15秒前
天天向上完成签到 ,获得积分10
15秒前
张伟发布了新的文献求助10
15秒前
zzzb完成签到,获得积分10
15秒前
qidong完成签到 ,获得积分10
16秒前
16秒前
李子不是杏完成签到 ,获得积分10
16秒前
YY发布了新的文献求助10
18秒前
执着的日记本完成签到 ,获得积分10
20秒前
小野菌发布了新的文献求助10
20秒前
隐形曼青应助张伟采纳,获得10
20秒前
Viiv完成签到,获得积分10
20秒前
morii发布了新的文献求助10
22秒前
香蕉觅云应助为SCI奋斗采纳,获得10
24秒前
wanci应助傲娇的康乃馨采纳,获得30
24秒前
25秒前
clm完成签到 ,获得积分10
25秒前
安沫完成签到 ,获得积分10
26秒前
GAN完成签到,获得积分10
26秒前
高高完成签到 ,获得积分10
27秒前
Master完成签到 ,获得积分10
27秒前
康轲完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965870
求助须知:如何正确求助?哪些是违规求助? 3511230
关于积分的说明 11156929
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793144
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278