电解质
陶瓷
材料科学
离子电导率
离子液体
电化学窗口
多孔性
电化学
化学工程
锂(药物)
电导率
准固态
复合材料
化学
电极
有机化学
工程类
物理化学
医学
催化作用
色素敏化染料
内分泌学
作者
Deborath M. Reinoso,Carmen de la Torre-Gamarra,Antonio J. Fernández-Ropero,B. Levenfeld,A. Várez
标识
DOI:10.1021/acsaem.3c02828
摘要
Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI