亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic segmentation of urban land classes using a multi-scale dataset

分割 计算机科学 比例(比率) 遥感 人工智能 地图学 地理
作者
Qian Wang,Chunhua Hu,Hanzhao Wang,Rui Wang,Yuning Xie,Yuankun Zhao
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (2): 653-675 被引量:3
标识
DOI:10.1080/01431161.2024.2302351
摘要

The use of remote sensing imagery for land cover and land use classification has made significant advancements in recent years. However, it becomes particularly challenging to enhance the semantic representation of high-resolution networks while dealing with uneven land categories and merging multi-scale data without compromising the accuracy of semantic segmentation. To tackle this challenge, this paper presents a novel method for classifying high-resolution remote sensing images based on a deep neural network that performs semantic segmentation of urban construction lands into five categories: vegetation, water, buildings, roads, and bare soil. The network incorporates a U-shaped high-resolution neural network and the advanced high-resolution network (HRNet) framework. The parallel storage of feature maps with different resolutions enables the exchange of information between them. The data pre-processing module addresses the issue of data imbalance in the semantic segmentation of urban construction lands, resulting in an increase in Intersection over Union (IoU) values for different land types by 3.75%-12.01%. Additionally, a target context representation module is introduced to enhance the feature representation of pixels by calculating the relationship between pixels and multiple target regions. Moreover, a polarization attention mechanism is proposed to extract the characteristics of geographical objects in all directions and achieve a stronger semantic representation. This method provides a novel approach to accurately and effectively extract information on construction lands and advance the development of monitoring algorithms for urban construction lands. To validate the proposed U-HRNet-OCR+PSA network, a comparative analysis was conducted with six classical networks, including DeepLabv3+, PSPNet, U-Net, U-Net++, HRNet, and HRNet-OCR, as well as the relatively new ViT-adapter-L, Oneformer and InternImage-H. The experiments demonstrate that the U-HRNet-OCR+PSA network achieves higher accuracy compared to the aforementioned networks. Specifically, the corresponding IoU values for the buildings, roads, vegetation, bare soil, and water in the multi-scale dataset are 89.79%, 90.05%, 94.89%, 85.91%, and 88.36%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhen发布了新的文献求助10
3秒前
季风气候完成签到 ,获得积分10
19秒前
30秒前
张志伟发布了新的文献求助10
35秒前
Artin完成签到,获得积分10
41秒前
田様应助张志伟采纳,获得10
44秒前
Swear完成签到 ,获得积分10
47秒前
俺村俺最牛完成签到 ,获得积分10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
ZJakariae完成签到,获得积分10
1分钟前
1分钟前
1分钟前
X_L_iang发布了新的文献求助10
1分钟前
2分钟前
hairgod发布了新的文献求助10
2分钟前
X_L_iang完成签到,获得积分10
2分钟前
2分钟前
风过大泽发布了新的文献求助10
2分钟前
风过大泽完成签到,获得积分20
3分钟前
3分钟前
陈陈陈完成签到 ,获得积分10
3分钟前
003完成签到,获得积分10
4分钟前
002完成签到,获得积分10
4分钟前
yinqinglu发布了新的文献求助10
4分钟前
001完成签到,获得积分10
5分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
Calyn完成签到 ,获得积分10
6分钟前
wanci应助科研通管家采纳,获得10
7分钟前
jyy应助科研通管家采纳,获得10
7分钟前
7分钟前
Party完成签到 ,获得积分10
7分钟前
ayayaya完成签到 ,获得积分10
9分钟前
chenlc971125完成签到 ,获得积分10
9分钟前
乐乐应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
9分钟前
cheng发布了新的文献求助10
9分钟前
心灵美砖头完成签到,获得积分10
9分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824996
求助须知:如何正确求助?哪些是违规求助? 3367312
关于积分的说明 10445199
捐赠科研通 3086684
什么是DOI,文献DOI怎么找? 1698167
邀请新用户注册赠送积分活动 816652
科研通“疑难数据库(出版商)”最低求助积分说明 769880