已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Clinical and Imaging Fused Deep Learning Model Matches Expert Clinician Prediction of 90-Day Stroke Outcomes

医学 冲程(发动机) 急性中风 曲线下面积 统计 急诊医学 内科学 机械工程 工程类 数学 组织纤溶酶原激活剂
作者
Yongkai Liu,Preya Shah,Yannan Yu,Jai Horsey,Jiahong Ouyang,Bin Jiang,Guang Yang,Jeremy J. Heit,Margy McCullough‐Hicks,Stephen M. Hugdal,Max Wintermark,Patrik Michel,David S. Liebeskind,Maarten G. Lansberg,Gregory W. Albers,Greg Zaharchuk
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:45 (4): 406-411 被引量:2
标识
DOI:10.3174/ajnr.a8140
摘要

BACKGROUND AND PURPOSE:

Predicting long-term clinical outcome in acute ischemic stroke is beneficial for prognosis, clinical trial design, resource management, and patient expectations. This study used a deep learning–based predictive model (DLPD) to predict 90-day mRS outcomes and compared its predictions with those made by physicians.

MATERIALS AND METHODS:

A previously developed DLPD that incorporated DWI and clinical data from the acute period was used to predict 90-day mRS outcomes in 80 consecutive patients with acute ischemic stroke from a single-center registry. We assessed the predictions of the model alongside those of 5 physicians (2 stroke neurologists and 3 neuroradiologists provided with the same imaging and clinical information). The primary analysis was the agreement between the ordinal mRS predictions of the model or physician and the ground truth using the Gwet Agreement Coefficient. We also evaluated the ability to identify unfavorable outcomes (mRS >2) using the area under the curve, sensitivity, and specificity. Noninferiority analyses were undertaken using limits of 0.1 for the Gwet Agreement Coefficient and 0.05 for the area under the curve analysis. The accuracy of prediction was also assessed using the mean absolute error for prediction, percentage of predictions ±1 categories away from the ground truth (±1 accuracy [ACC]), and percentage of exact predictions (ACC).

RESULTS:

To predict the specific mRS score, the DLPD yielded a Gwet Agreement Coefficient score of 0.79 (95% CI, 0.71–0.86), surpassing the physicians' score of 0.76 (95% CI, 0.67–0.84), and was noninferior to the readers (P < .001). For identifying unfavorable outcome, the model achieved an area under the curve of 0.81 (95% CI, 0.72–0.89), again noninferior to the readers' area under the curve of 0.79 (95% CI, 0.69–0.87) (P < .005). The mean absolute error, ±1ACC, and ACC were 0.89, 81%, and 36% for the DLPD.

CONCLUSIONS:

A deep learning method using acute clinical and imaging data for long-term functional outcome prediction in patients with acute ischemic stroke, the DLPD, was noninferior to that of clinical readers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小发布了新的文献求助10
2秒前
香蕉子骞完成签到 ,获得积分10
2秒前
Fxhy发布了新的文献求助10
4秒前
bkagyin应助是一颗大树呀采纳,获得10
4秒前
5秒前
6秒前
W~舞完成签到,获得积分10
8秒前
Zyl完成签到 ,获得积分10
8秒前
牛先生生完成签到,获得积分10
8秒前
斯文败类应助隐形的大有采纳,获得10
11秒前
Ralap发布了新的文献求助30
11秒前
cool发布了新的文献求助10
12秒前
SciGPT应助小小采纳,获得10
14秒前
14秒前
Fxhy完成签到,获得积分10
15秒前
宇宇完成签到 ,获得积分10
16秒前
科研通AI5应助cookie采纳,获得10
16秒前
冷酷夏真完成签到 ,获得积分10
19秒前
Jackie发布了新的文献求助10
19秒前
饿哭了塞完成签到 ,获得积分10
20秒前
我是老大应助xiang采纳,获得10
20秒前
闫123完成签到,获得积分10
22秒前
CK完成签到 ,获得积分10
25秒前
Jade发布了新的文献求助10
26秒前
chaos完成签到 ,获得积分10
27秒前
秋梓夏枳完成签到 ,获得积分10
28秒前
Hiraeth完成签到 ,获得积分10
29秒前
Breathe完成签到,获得积分10
29秒前
zdyfychenyan完成签到 ,获得积分10
30秒前
31秒前
爱科研的小凡完成签到,获得积分10
32秒前
田様应助英俊的小虾米采纳,获得10
34秒前
博慧完成签到 ,获得积分10
35秒前
XIA完成签到 ,获得积分10
36秒前
Ming完成签到,获得积分10
37秒前
付樽墨儒完成签到,获得积分20
37秒前
激动的55完成签到 ,获得积分10
38秒前
圆圆完成签到 ,获得积分10
40秒前
积极的尔白完成签到 ,获得积分10
41秒前
CC完成签到 ,获得积分10
42秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4639105
求助须知:如何正确求助?哪些是违规求助? 4032390
关于积分的说明 12475550
捐赠科研通 3719568
什么是DOI,文献DOI怎么找? 2052819
邀请新用户注册赠送积分活动 1084027
科研通“疑难数据库(出版商)”最低求助积分说明 965909