Non-targeted metabolomics study for discovery of hepatocellular carcinoma serum diagnostic biomarker

代谢组学 肝细胞癌 生物标志物 葡萄糖醛酸盐 化学 生物标志物发现 接收机工作特性 代谢组 诊断生物标志物 曲线下面积 内科学 肿瘤科 医学 蛋白质组学 生物化学 色谱法 基因
作者
Shufeng Wang,Tingting He,Hongxia Wang
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:239: 115869-115869 被引量:6
标识
DOI:10.1016/j.jpba.2023.115869
摘要

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant cancers worldwide. Due to the asymptomatic features of HCC at early stages, patients are often diagnosed at advanced stages and missed effective treatment. Thus, there is an urgent need to identify sensitive and specific biomarkers for HCC early diagnosis. In the present study, an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach was used to profile serum metabolites from HCC patients, liver cirrhosis (LC) patients, and normal controls (NC). Univariate and multivariate statistical analyses were performed to obtain the metabolomic differences of the three groups and select significantly changed metabolites that can be used as diagnostic biomarkers. In total, 757 differential metabolites were quantified among the three groups, and pathway enrichment analysis of these metabolites indicated that glycerophospholipid metabolism, pentose and glucuronate interconversions, phenylalanine, tyrosine and tryptophan biosynthesis, and linoleic acid metabolism were the most altered pathways involved in HCC development. Receiver operating characteristic (ROC) curve analysis was performed to select and evaluate the diagnostic biomarker performance. Seven metabolites were identified as potential biomarkers that can differentiate HCC from LC and NC, and LC from NC with the good diagnostic performance of area under the curve (AUC) from 0.890 to 0.990. In summary, our findings provide highly effective biomarker candidates to differentiate HCC from LC and NC, LC, and NC, which shed insight into HCC pathological mechanisms and will be helpful in better understanding and managing HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
刚刚
1秒前
不是省油的灯完成签到,获得积分10
1秒前
ddog完成签到,获得积分10
1秒前
冷却水发布了新的文献求助10
1秒前
1秒前
lll111完成签到 ,获得积分10
1秒前
村口烫头祁师傅完成签到,获得积分10
2秒前
xx发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
羊屎蛋完成签到 ,获得积分10
3秒前
熏熏发布了新的文献求助10
3秒前
LT完成签到,获得积分10
3秒前
3秒前
3秒前
就好完成签到 ,获得积分10
4秒前
所所应助卖萌的秋田采纳,获得10
4秒前
李慧完成签到,获得积分20
4秒前
matty完成签到,获得积分20
4秒前
勤奋的擎苍完成签到 ,获得积分10
4秒前
lu2025发布了新的文献求助10
5秒前
Zhu发布了新的文献求助10
6秒前
JJS发布了新的文献求助10
6秒前
寒塘渡鹤影完成签到,获得积分10
7秒前
榛蘑大王发布了新的文献求助10
8秒前
8秒前
小蘑菇应助mynuongga采纳,获得10
8秒前
壮观的戒指关注了科研通微信公众号
8秒前
科研通AI6.1应助matty采纳,获得10
8秒前
天天喝咖啡完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
娇气的代娃完成签到,获得积分10
10秒前
jiaao完成签到,获得积分10
10秒前
科研通AI6.1应助11采纳,获得10
10秒前
李爱国应助grentch采纳,获得10
10秒前
鲲鹏发布了新的文献求助10
10秒前
11秒前
完美世界应助寒塘渡鹤影采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774094
求助须知:如何正确求助?哪些是违规求助? 5615909
关于积分的说明 15434577
捐赠科研通 4906555
什么是DOI,文献DOI怎么找? 2640285
邀请新用户注册赠送积分活动 1588108
关于科研通互助平台的介绍 1543157