This study delves into effects of deep cryogenic treatment (DCT) on enhancing the hydrogen embrittlement resistance of CoCrFeMnNi high-entropy alloy fabricated via laser powder-bed-fusion (L-PBF). Comparatively assessing as-print, conventional heat treatment, and DCT, we uncover how nanotwin formation within matrix serves as a critical mechanism to combat adverse effects of hydrogen embrittlement. This work reveals that DCT not only mitigates inherent residual stresses from L-PBF, thereby fostering dislocation redistribution and microstructural stabilization, but also synergizes with high-density dislocation cells. Our findings articulate a nuanced understanding of microstructural evolution in response to post-treatments and consequential enhancement of hydrogen embrittlement resistance.