Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines

稳态可塑性 神经科学 平衡 癫痫发生 光遗传学 生物 突触可塑性 变质塑性 癫痫 细胞生物学 生物化学 受体
作者
Caterina Michetti,Fabio Benfenati
出处
期刊:American Journal of Physiology-cell Physiology [American Physical Society]
卷期号:327 (6): C1384-C1399
标识
DOI:10.1152/ajpcell.00470.2024
摘要

After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe “on demand” gene therapy strategies, including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然思卉完成签到,获得积分10
15秒前
taster完成签到,获得积分10
16秒前
那些兔儿完成签到 ,获得积分0
18秒前
典雅三颜完成签到 ,获得积分10
19秒前
Paddi完成签到 ,获得积分10
19秒前
悦耳冬萱完成签到 ,获得积分10
20秒前
chenjiaye完成签到 ,获得积分10
21秒前
mufulee完成签到,获得积分10
22秒前
minmin完成签到,获得积分10
22秒前
YY完成签到,获得积分10
23秒前
月亮之下完成签到 ,获得积分10
23秒前
hhhee完成签到,获得积分10
25秒前
橘子完成签到 ,获得积分10
34秒前
猪仔5号完成签到 ,获得积分10
36秒前
蓝胖胖蓝完成签到,获得积分10
36秒前
liuliu完成签到 ,获得积分10
36秒前
38秒前
科研通AI5应助zcbb采纳,获得10
41秒前
昱昱完成签到 ,获得积分10
43秒前
火星上的雨柏完成签到,获得积分10
44秒前
44秒前
余味应助科研通管家采纳,获得10
44秒前
44秒前
斯文败类应助科研通管家采纳,获得10
44秒前
余味应助科研通管家采纳,获得10
44秒前
47秒前
55秒前
zy发布了新的文献求助10
59秒前
悦耳玲完成签到 ,获得积分10
1分钟前
1分钟前
乒坛巨人完成签到 ,获得积分10
1分钟前
航行天下完成签到 ,获得积分10
1分钟前
zr20082009发布了新的文献求助10
1分钟前
胖宏完成签到 ,获得积分10
1分钟前
甜甜青文完成签到 ,获得积分10
1分钟前
优雅的千雁完成签到,获得积分10
1分钟前
Yes0419完成签到,获得积分10
1分钟前
1分钟前
Lionel完成签到,获得积分10
1分钟前
mayberichard完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043130
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994