亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines

稳态可塑性 神经科学 平衡 癫痫发生 光遗传学 生物 突触可塑性 变质塑性 癫痫 细胞生物学 生物化学 受体
作者
Caterina Michetti,Fabio Benfenati
出处
期刊:American Journal of Physiology-cell Physiology [American Physiological Society]
卷期号:327 (6): C1384-C1399 被引量:2
标识
DOI:10.1152/ajpcell.00470.2024
摘要

After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe “on demand” gene therapy strategies, including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
22秒前
28秒前
32秒前
40秒前
43秒前
48秒前
搜集达人应助Nature_Science采纳,获得10
55秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
河狸完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
房天川完成签到 ,获得积分10
3分钟前
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
共享精神应助Nature_Science采纳,获得10
4分钟前
丘比特应助贪玩的雅霜采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606575
求助须知:如何正确求助?哪些是违规求助? 4691070
关于积分的说明 14866893
捐赠科研通 4708433
什么是DOI,文献DOI怎么找? 2542956
邀请新用户注册赠送积分活动 1508222
关于科研通互助平台的介绍 1472280