纳米尺度
离子
材料科学
原子单位
纳米技术
化学
物理
有机化学
量子力学
作者
Hossein Taghinejad,Mohammad Taghinejad,Sajjad Abdollahramezani,Qitong Li,Eric Woods,Mengkun Tian,Ali A. Eftekhar,Yuanqi Lyu,Xiang Zhang,Pulickel M. Ajayan,Wenshan Cai,Mark L. Brongersma,James G. Analytis,Ali Adibi
出处
期刊:Cornell University - arXiv
日期:2024-10-08
标识
DOI:10.48550/arxiv.2410.06181
摘要
Achieving deterministic control over the properties of low-dimensional materials with nanoscale precision is a long-sought goal. Mastering this capability has a transformative impact on the design of multifunctional electrical and optical devices. Here, we present an ion-assisted synthetic technique that enables precise control over the material composition and energy landscape of two-dimensional (2D) atomic crystals. Our method transforms binary transition metal dichalcogenides (TMDs), like MoSe$_2$, into ternary MoS$_{2\alpha}$Se$_{2(1-{\alpha}})$ alloys with systematically adjustable compositions, ${\alpha}$. By piecewise assembly of the lateral, compositionally modulated MoS$_{2\alpha}$Se$_{2(1-{\alpha})}$ segments within 2D atomic layers, we present a synthetic pathway towards the realization of multi-compositional designer materials. Our technique enables the fabrication of complex structures with arbitrary boundaries, dimensions as small as 30 nm, and fully customizable energy landscapes. Our optical characterizations further showcase the potential for implementing tailored optoelectronics in these engineered 2D crystals.
科研通智能强力驱动
Strongly Powered by AbleSci AI