TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction

相似性(几何) 矩阵分解 融合 基质(化学分析) 计算机科学 非负矩阵分解 因式分解 联想(心理学) 人工智能 药品 模式识别(心理学) 数学 计算生物学 医学 算法 药理学 化学 物理 生物 心理学 色谱法 语言学 特征向量 哲学 量子力学 图像(数学) 心理治疗师
作者
Tiyao Liu,Shudong Wang,Yuanyuan Zhang,Yunyin Li,Yingye Liu,Shiyuan Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (22): 8641-8654 被引量:3
标识
DOI:10.1021/acs.jcim.4c01589
摘要

Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助Allen采纳,获得10
3秒前
xiao双月发布了新的文献求助10
4秒前
5秒前
zd完成签到,获得积分10
5秒前
小于完成签到,获得积分10
7秒前
Two-Capitals发布了新的文献求助10
7秒前
Owen应助自信的碧采纳,获得10
8秒前
Dawn完成签到 ,获得积分10
8秒前
旷野发布了新的文献求助10
10秒前
10秒前
666发布了新的文献求助10
11秒前
赘婿应助晓晓采纳,获得10
12秒前
adamchase完成签到,获得积分10
13秒前
归尘发布了新的文献求助10
14秒前
阳枝甘禄完成签到 ,获得积分10
14秒前
puhong zhang发布了新的文献求助10
15秒前
15秒前
15秒前
yangwy完成签到,获得积分10
16秒前
18秒前
18秒前
ryd完成签到,获得积分10
18秒前
19秒前
深情安青应助Flanker采纳,获得10
20秒前
僦是卜够发布了新的文献求助10
20秒前
秦亦云发布了新的文献求助10
21秒前
23秒前
23秒前
Orange应助叶叶叶采纳,获得10
24秒前
晓晓发布了新的文献求助10
24秒前
星辰大海应助fly采纳,获得10
25秒前
zzz发布了新的文献求助10
26秒前
自信河马发布了新的文献求助10
27秒前
27秒前
超帅的又槐完成签到,获得积分10
28秒前
30秒前
笑笑完成签到 ,获得积分10
30秒前
31秒前
完美世界应助panjunlu采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933405
求助须知:如何正确求助?哪些是违规求助? 3478345
关于积分的说明 11001734
捐赠科研通 3208639
什么是DOI,文献DOI怎么找? 1773147
邀请新用户注册赠送积分活动 860186
科研通“疑难数据库(出版商)”最低求助积分说明 797555