In situ Ligand‐Managed SnO2 Electron Transport Layer for High‐Efficiency and Stable Perovskite Solar Cells

材料科学 钙钛矿(结构) 氧化锡 图层(电子) 纳米颗粒 能量转换效率 化学工程 光电子学 纳米技术 兴奋剂 冶金 工程类
作者
Yulu Sun,Ruoyao Xu,Lin Yang,Jinfei Dai,Xinyi Zhu,Xiangrong Cao,Peizhou Li,He‐Bin Tang,Tao Liu,Daolei Mo,Yunxuan Wang,Jingrui Li,Yuan Fang,Bo Jiao,Zhaoxin Wu,Hua Dong
出处
期刊:Advanced Functional Materials [Wiley]
被引量:6
标识
DOI:10.1002/adfm.202410165
摘要

Abstract Tin oxide (SnO 2 ) with high conductivity and excellent photostability has been considered as one of the most promising materials for efficient electron transport layer (ETL) in perovskite solar cells (PSCs). Among them, SnO 2 nanoparticles (NPs) dispersions have been extensively utilized due to their facile film formation. However, the inherent defects and agglomeration issues of SnO 2 NPs, as well as the limited tunability and instability of the post‐treatment process for surface/interface engineering strategy, still hinder its further applications. Herein, a ligand‐management strategy implemented during the in situ synthesis of NPs that can effectively achieve uniform modification of NPs is proposed. During the synthesis of SnO 2 NPs, the grafting reaction between diethyl 2‐chloromalonate (DCMA) and the surface of SnO 2 NPs is completed. Compared with the post‐treatment process, this intrinsic DCMA‐passivated SnO 2 (DCMA‐SnO 2 ) effectively reduces the trap state density at the interface between perovskite and ETL while enhancing surface chemical stability. Consequently, PSCs based on DCMA‐SnO 2 achieve a champion PCE of 25.39% for small cells (active area of 0.0655 cm 2 ) and 20.61% for solar modules (active area of 23.25 cm 2 ), demonstrating excellent shelf‐life/light soaking stability (advanced level of ISOS stability protocols). This ligand‐management strategy exhibits significant application potential in preparing high‐efficiency large‐area PSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭唧唧发布了新的文献求助10
1秒前
2秒前
kyokukou发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
5秒前
PanCiro发布了新的文献求助10
5秒前
君君完成签到,获得积分10
7秒前
包纪星完成签到,获得积分10
7秒前
skyrmion完成签到,获得积分10
7秒前
刘雨欣发布了新的文献求助10
9秒前
9秒前
君君发布了新的文献求助10
10秒前
10秒前
实验耗材完成签到 ,获得积分10
11秒前
12秒前
Akim应助大大小采纳,获得20
13秒前
13秒前
莹亮的星空完成签到,获得积分0
13秒前
科研通AI2S应助HE采纳,获得10
13秒前
14秒前
14秒前
SciGPT应助chen采纳,获得10
16秒前
axunQAQ发布了新的文献求助30
16秒前
17秒前
17秒前
wxx发布了新的文献求助10
17秒前
312发布了新的文献求助10
18秒前
absb发布了新的文献求助10
19秒前
qazx应助只想学好生信采纳,获得10
19秒前
19秒前
彭于晏应助今天不晚饭吃采纳,获得10
20秒前
霹雳侠完成签到,获得积分10
21秒前
小马甲应助虚心元绿采纳,获得10
21秒前
3D完成签到,获得积分10
22秒前
pink完成签到,获得积分10
23秒前
23秒前
24秒前
zhuizhui发布了新的文献求助10
24秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906027
求助须知:如何正确求助?哪些是违规求助? 3451606
关于积分的说明 10865426
捐赠科研通 3176966
什么是DOI,文献DOI怎么找? 1755185
邀请新用户注册赠送积分活动 848686
科研通“疑难数据库(出版商)”最低求助积分说明 791203