Pore Network Modelling of a Lithium Ion Battery Cathode as a Tool for Microstructure Optimization

微观结构 阴极 电池(电) 锂(药物) 锂离子电池 材料科学 离子 计算机科学 化学工程 复合材料 化学 电气工程 工程类 物理 心理学 热力学 功率(物理) 有机化学 精神科
作者
Michael Gilmour McKague,Mohammad Amin Sadeghi,Jeff T. Gostick
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (5): 730-730
标识
DOI:10.1149/ma2024-015730mtgabs
摘要

Lithium ion batteries (LIBs) have become the battery of choice, owning almost 90% of the energy storage market [1]. They boast excellent power and energy density, but performance decreases at high discharge rates limiting their use in large scale applications [2]. With the availability of graphite and silicon materials as anode, the anode in a lithium-ion battery is already well optimized and research has focused primarily on the development of cathode materials with high rate-capacity. A LIB cathode is a porous material comprised of electrolyte, active material, and carbon binder phases. The electrolyte facilitates the migration and diffusion of lithium ions from the anode, through a porous separator, and to the active material where lithium ions intercalate, and electronic current is produced as the battery discharges. A carbon binder phase is also dispersed to enhance the electrical conductivity of the cathode and may even contain micropores that can increase current density [3]. The porous microstructure of a LIB cathode thereby plays an important role in controlling the movement of lithium ions and accessibility of active material effecting both discharge rate and capacity of LIBs. Therefore, tailoring the cathode microstructure provides a route for LIB cathode optimization. Pore scale models that resolve the electrolyte, active material, and carbon binder phases in a cathode can be used for this purpose. Pore scale models offer unique advantages compared to experimental studies in that they can test a wide variety of microstructures, even ones that are not yet realized, in a relatively short time frame. Typical battery models are continuum models that do not resolve the pore space and instead use effective properties determined from experiment. Pore scale models do not use effective properties saving experimental effort but are disadvantageous in that they are computationally very expensive requiring a fine mesh on a highly resolved volumetric image. Of the pore-scale modeling options, pore network modelling (PNM) is an especially efficient approach that discretizes the microstructure into pores and throats where pores are the computational nodes and throats are constrictions connecting pores [4]. In the literature, there is only one known pore network model of a LIB cathode, but it is an isothermal model that does not consider the effect of heat generation from electrochemical reactions [5]. While this model was effective at predicting discharge performance at low currents, predicting the voltage for galvanostatic discharge at high currents proved to be difficult, possibly because of assumed isothermal behaviour. Therefore, this work is focused on the development of a non-isothermal pore network model of a LIB cathode undergoing galvanostatic discharge. The complete set of partial differential equations and their discretization’s for modelling lithium transport, ionic or electronic charge transport, as well as heat transfer in all three phases of a LIB cathode is presented along with the numerical framework used for solving the coupled physics. This framework and discretized set of equations are demonstrated on a pore network extracted from an X-ray tomography image of a NMC532 cathode. Post-processing of the extracted network is done to apply novel interphase nodes between active material and electrolyte phases to provide sites for lithium intercalation to occur. The pore network model is written in Python using OpenPNM, an open-source pore network modelling package [6]. [1] S. Zavahir et al. , “A review on lithium recovery using electrochemical capturing systems,” Desalination , vol. 500, Mar. 2021, doi: 10.1016/j.desal.2020.114883. [2] R. Wagner, N. Preschitschek, S. Passerini, J. Leker, and M. Winter, “Current research trends and prospects among the various materials and designs used in lithium-based batteries,” J Appl Electrochem , vol. 43, no. 5, pp. 481–496, May 2013, doi: 10.1007/S10800-013-0533-6/FIGURES/10. [3] Z. A. Khan et al. , “Probing the Structure-Performance Relationship of Lithium-Ion Battery Cathodes Using Pore-Networks Extracted from Three-Phase Tomograms,” J Electrochem Soc , 2020, doi: 10.1149/1945-7111/ab7bd8. [4] M. McKague, H. Fathiannasab, M. Agnaou, M. A. Sadeghi, and J. Gostick, “Extending pore network models to include electrical double layer effects in micropores for studying capacitive deionization,” Desalination , vol. 535, 2022, doi: 10.1016/j.desal.2022.115784. [5] Z. A. Khan, M. Agnaou, M. A. Sadeghi, A. Elkamel, and J. T. Gostick, “Pore Network Modelling of Galvanostatic Discharge Behaviour of Lithium-Ion Battery Cathodes,” J Electrochem Soc , vol. 168, no. 7, Jul. 2021, doi: 10.1149/1945-7111/ac120c. [6] J. Gostick et al. , “OpenPNM: A Pore Network Modeling Package,” Comput Sci Eng , vol. 18, no. 4, pp. 60–74, Jul. 2016, doi: 10.1109/MCSE.2016.49. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GD88完成签到 ,获得积分10
刚刚
椰子完成签到 ,获得积分10
3秒前
cookiezhu01完成签到 ,获得积分10
3秒前
3秒前
HC3完成签到,获得积分10
4秒前
云卷云舒完成签到 ,获得积分10
4秒前
雪球1248发布了新的文献求助10
4秒前
温水完成签到,获得积分10
5秒前
感动的小鸽子完成签到,获得积分10
6秒前
勤劳太阳完成签到,获得积分10
8秒前
诚心桐完成签到,获得积分10
8秒前
DOUBLE完成签到,获得积分10
9秒前
fx完成签到,获得积分10
9秒前
呆萌鱼完成签到,获得积分10
10秒前
qq完成签到 ,获得积分10
11秒前
浮游应助张三采纳,获得10
12秒前
又又完成签到 ,获得积分10
12秒前
冷静妙海完成签到,获得积分10
12秒前
skysleeper完成签到,获得积分0
13秒前
夕寸完成签到,获得积分10
15秒前
yf关闭了yf文献求助
15秒前
dayday完成签到,获得积分10
16秒前
落浪完成签到 ,获得积分10
16秒前
开心祯祯完成签到,获得积分10
18秒前
Hou完成签到,获得积分10
19秒前
hahaha完成签到,获得积分10
20秒前
瑞rui完成签到 ,获得积分10
20秒前
bo完成签到 ,获得积分10
21秒前
amberzyc完成签到,获得积分0
21秒前
量子星尘发布了新的文献求助10
22秒前
小魏哥完成签到,获得积分10
23秒前
阔达的凡完成签到 ,获得积分10
23秒前
谦让的含海完成签到,获得积分10
23秒前
imcwj完成签到 ,获得积分10
25秒前
小粗莓完成签到,获得积分10
26秒前
wlei完成签到,获得积分10
28秒前
jzmupyj完成签到,获得积分10
30秒前
邓志天完成签到,获得积分10
31秒前
TianFuAI完成签到,获得积分10
31秒前
Bin完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432918
求助须知:如何正确求助?哪些是违规求助? 4545389
关于积分的说明 14195696
捐赠科研通 4464890
什么是DOI,文献DOI怎么找? 2447318
邀请新用户注册赠送积分活动 1438600
关于科研通互助平台的介绍 1415620