Probing Synergistic High-Order Interaction for Multi-modal Image Fusion

人工智能 计算机科学 图像融合 计算机视觉 情态动词 融合 图像(数学) 模式识别(心理学) 语言学 哲学 化学 高分子化学
作者
Man Zhou,Naishan Zheng,Xuanhua He,Danfeng Hong,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18 被引量:4
标识
DOI:10.1109/tpami.2024.3475485
摘要

Multi-modal image fusion aims to generate a fused image by integrating and distinguishing the cross-modality complementary information from multiple source images. While the cross-attention mechanism with global spatial interactions appears promising, it only captures second-order spatial interactions, neglecting higher-order interactions in both spatial and channel dimensions. This limitation hampers the exploitation of synergies between multi-modalities. To bridge this gap, we introduce a Synergistic High-order Interaction Paradigm (SHIP), designed to systematically investigate spatial fine-grained and global statistics collaborations between the multi-modal images across two fundamental dimensions: 1) Spatial dimension: we construct spatial fine-grained interactions through element-wise multiplication, mathematically equivalent to global interactions, and then foster high-order formats by iteratively aggregating and evolving complementary information, enhancing both efficiency and flexibility. 2) Channel dimension: expanding on channel interactions with first-order statistics (mean), we devise high-order channel interactions to facilitate the discernment of inter-dependencies between source images based on global statistics. We further introduce an enhanced version of the SHIP model, called SHIP++ that enhances the cross-modality information interaction representation by the cross-order attention evolving mechanism, cross-order information integration, and residual information memorizing mechanism. Harnessing high-order interactions significantly enhances our model's ability to exploit multi-modal synergies, leading in superior performance over state-of-the-art alternatives, as shown through comprehensive experiments across various benchmarks in two significant multi-modal image fusion tasks: pan-sharpening, and infrared and visible image fusion. The source code is publicly available at https://github.com/manman1995/HOIF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
酷波er应助阿诺采纳,获得10
1秒前
heiniu完成签到,获得积分10
1秒前
Micky发布了新的文献求助40
2秒前
思源应助nano_metal采纳,获得10
2秒前
肖肖发布了新的文献求助10
2秒前
LS发布了新的文献求助10
2秒前
老魏发布了新的文献求助10
3秒前
Muya发布了新的文献求助10
3秒前
小老头儿完成签到,获得积分10
3秒前
眯眯眼的枕头完成签到,获得积分10
4秒前
张悦完成签到,获得积分10
4秒前
heiniu发布了新的文献求助10
5秒前
tsyanikmo发布了新的文献求助50
6秒前
123566完成签到,获得积分10
6秒前
Lee发布了新的文献求助10
6秒前
6秒前
kokodayour完成签到,获得积分10
7秒前
科目三应助JiayuWang采纳,获得10
7秒前
俏皮梦桃完成签到,获得积分10
7秒前
qingmang发布了新的文献求助10
7秒前
Getlogger发布了新的文献求助10
7秒前
7秒前
7秒前
bai完成签到,获得积分10
8秒前
vvA11发布了新的文献求助10
8秒前
哈温完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助rtx00采纳,获得10
8秒前
9秒前
任性访风完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
脑洞疼应助老魏采纳,获得10
11秒前
阿佳发布了新的文献求助10
11秒前
关键词发布了新的文献求助10
11秒前
在水一方应助Young采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4157157
求助须知:如何正确求助?哪些是违规求助? 3693171
关于积分的说明 11662511
捐赠科研通 3384007
什么是DOI,文献DOI怎么找? 1856575
邀请新用户注册赠送积分活动 917977
科研通“疑难数据库(出版商)”最低求助积分说明 831217