Pyramid Cascaded Convolutional Neural Network with Graph Convolution for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 卷积神经网络 卷积(计算机科学) 图形 模式识别(心理学) 棱锥(几何) 计算机视觉 人工神经网络 数学 理论计算机科学 几何学
作者
Haizhu Pan,Hui Yan,Haimiao Ge,Liguo Wang,Cuiping Shi
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 2942-2942 被引量:1
标识
DOI:10.3390/rs16162942
摘要

Convolutional neural networks (CNNs) and graph convolutional networks (GCNs) have made considerable advances in hyperspectral image (HSI) classification. However, most CNN-based methods learn features at a single-scale in HSI data, which may be insufficient for multi-scale feature extraction in complex data scenes. To learn the relations among samples in non-grid data, GCNs are employed and combined with CNNs to process HSIs. Nevertheless, most methods based on CNN-GCN may overlook the integration of pixel-wise spectral signatures. In this paper, we propose a pyramid cascaded convolutional neural network with graph convolution (PCCGC) for hyperspectral image classification. It mainly comprises CNN-based and GCN-based subnetworks. Specifically, in the CNN-based subnetwork, a pyramid residual cascaded module and a pyramid convolution cascaded module are employed to extract multiscale spectral and spatial features separately, which can enhance the robustness of the proposed model. Furthermore, an adaptive feature-weighted fusion strategy is utilized to adaptively fuse multiscale spectral and spatial features. In the GCN-based subnetwork, a band selection network (BSNet) is used to learn the spectral signatures in the HSI using nonlinear inter-band dependencies. Then, the spectral-enhanced GCN module is utilized to extract and enhance the important features in the spectral matrix. Subsequently, a mutual-cooperative attention mechanism is constructed to align the spectral signatures between BSNet-based matrix with the spectral-enhanced GCN-based matrix for spectral signature integration. Abundant experiments performed on four widely used real HSI datasets show that our model achieves higher classification accuracy than the fourteen other comparative methods, which shows the superior classification performance of PCCGC over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张文发布了新的文献求助10
刚刚
刚刚
2秒前
3秒前
华仔应助鱼骨头采纳,获得10
3秒前
3秒前
自由寻冬发布了新的文献求助10
3秒前
Lsy发布了新的文献求助10
3秒前
3秒前
4秒前
无花果应助顾年采纳,获得10
4秒前
自由沧海完成签到,获得积分10
5秒前
邓佳鑫Alan应助hamzhi采纳,获得10
6秒前
善学以致用应助对映体采纳,获得10
6秒前
一个醇祝发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
8秒前
十一玮完成签到,获得积分10
9秒前
英勇白莲完成签到,获得积分10
9秒前
小萝卜头吖完成签到,获得积分20
9秒前
自由沧海发布了新的文献求助10
9秒前
lumu完成签到,获得积分10
10秒前
Mumu发布了新的文献求助10
10秒前
张志超发布了新的文献求助10
11秒前
11秒前
靓丽雨梅完成签到 ,获得积分10
11秒前
高挑的冰露完成签到 ,获得积分10
11秒前
Elaine发布了新的文献求助10
12秒前
大个应助心灵美的不斜采纳,获得10
12秒前
a.........发布了新的文献求助10
12秒前
完美世界应助wxx采纳,获得10
13秒前
郭嘉仪发布了新的文献求助10
13秒前
13秒前
14秒前
xzy998应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得100
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4818073
求助须知:如何正确求助?哪些是违规求助? 4127838
关于积分的说明 12774243
捐赠科研通 3867052
什么是DOI,文献DOI怎么找? 2128012
邀请新用户注册赠送积分活动 1148981
关于科研通互助平台的介绍 1044369