清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Model-based deep reinforcement learning for active control of flow around a circular cylinder using action-informed episode-based neural ordinary differential equations

物理 动作(物理) 圆柱 人工神经网络 流量(数学) 常微分方程 微分方程 强化学习 应用数学 人工智能 机械 数学分析 几何学 计算机科学 数学 量子力学
作者
Yiqian Mao,Shan Zhong,Hujun Yin
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0220129
摘要

To date, applications of deep reinforcement learning (DRL) to active flow control (AFC) have been largely achieved via model-free DRL wherein the agent's policy is optimized through direct interactions with the actual physical system represented by computational fluid dynamics solvers. However, high computational demands and tendency of numerical divergence can significantly compromise the effectiveness of model-free DRL as the Reynolds number increases. A model-based DRL paradigm, which utilizes neural ordinary differential equations (NODE) to develop an environment model through integration with dimensionality reduction, offers a promising way forward to overcome this problem. This study presents an inaugural application of NODE model-based DRL to control the vortex shedding process from a two-dimensional circular cylinder using two synthetic jet actuators at a freestream Reynolds number of 100. An action-informed episode-based NODE (AENODE) method is developed to overcome the error cascading effect caused by recursive predictions in the existing studies, which typically adopt a single-step prediction NODE (denoted as the time step-based NODE (TNODE) in this paper). Both the AENODE and TNODE methods are employed in this study, and they are amalgamated with three distinct feature extraction approaches, expert-placed velocity sensors, proper orthogonal decomposition, and autoencoders, to construct six low-dimensional dynamical models (LDMs) of the DRL environment. It is found that AENODE resulted in over 90% fewer prediction errors at the end of an episode than TNODE with all LDMs via effectively mitigating the accumulation of long-term prediction errors associated with the recursive use of TNODE, leading to a more robust convergence in training the agents throughout repeated runs. Furthermore, the model-based DRL with either AENODE or TNODE is capable of identifying very similar control strategies to that obtained by the model-free DRL. The AENODE agents achieved 66.2%–72.4% of the rewards obtained by the model-free DRL, whereas the TNODE agents attained merely 43.4%–54.7%, indicating that AENODE provides a more accurate modeling of environment dynamics in DRL. It is also shown that completing a model-based DRL task using either TNODE or AENODE utilized only 10% of the data size requiring either 14% or 33% of the total wall-clock time required by the model-free DRL, and the actual time required for training the agents within the environment model was less than 1% of that required by the model-free DRL. Therefore, the AENODE method developed in this work not only enables a significant saving in computational costs but also outperforms the TNODE method in training convergence and reward. It represents a novel low-dimensional dynamical modeling method tailored for model-based DRL, which would enable the DRL-aided AFC to be applied to more complex flow scenarios occurring at high Reynolds numbers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
澜生完成签到 ,获得积分10
31秒前
Barid完成签到,获得积分10
31秒前
大米小米锅锅完成签到 ,获得积分10
41秒前
wujiwuhui完成签到 ,获得积分10
50秒前
烟花应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
平常的毛豆应助Ana采纳,获得30
1分钟前
稻子完成签到 ,获得积分10
1分钟前
无悔完成签到 ,获得积分10
2分钟前
深情安青应助vanHaren采纳,获得10
2分钟前
2分钟前
vanHaren发布了新的文献求助10
3分钟前
vanHaren完成签到,获得积分10
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
知行者完成签到 ,获得积分10
3分钟前
cadcae完成签到,获得积分10
3分钟前
义气雁完成签到 ,获得积分10
4分钟前
jjj完成签到 ,获得积分10
4分钟前
西红柿不吃皮完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
自然之水完成签到,获得积分10
5分钟前
心静自然好完成签到 ,获得积分10
5分钟前
earthai完成签到,获得积分10
5分钟前
彩色映雁完成签到 ,获得积分10
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
asdwind完成签到,获得积分10
5分钟前
抹茶小汤圆完成签到 ,获得积分10
5分钟前
疯狂的迪子完成签到 ,获得积分10
5分钟前
神勇的天问完成签到 ,获得积分10
6分钟前
六一完成签到 ,获得积分10
6分钟前
易水寒完成签到 ,获得积分10
6分钟前
胖小羊完成签到 ,获得积分10
6分钟前
budingman发布了新的文献求助30
6分钟前
林夕完成签到 ,获得积分10
6分钟前
青出于蓝蔡完成签到,获得积分10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468