亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weighted K-NN Classification Method of Bearings Fault Diagnosis With Multi-Dimensional Sensitive Features

计算机科学 断层(地质) 特征工程 模式识别(心理学) 人工智能 状态监测 特征(语言学) 数据挖掘 方位(导航) 特征提取 一般化 熵(时间箭头) 支持向量机 特征向量 工程类 深度学习 数学 数学分析 哲学 地质学 地震学 物理 电气工程 量子力学 语言学
作者
Qingfeng Wang,Shuai Wang,Bingkun Wei,Wenwu Chen,Yufei Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 45428-45440 被引量:35
标识
DOI:10.1109/access.2021.3066489
摘要

Research on the intelligent fault diagnosis method of rolling bearing based on laboratory data has made some achievements. However, due to the change of working conditions and the lack of historical data of the same equipment in the actual diagnosis, some methods mostly have problems such as poor generalization. Model training and verification data are insufficient, and engineering practice still lacks effective intelligent fault diagnosis methods. In this paper, we propose a weighted k-nearest neighbor (WKNN) fault diagnosis model based on multi-dimensional sensitive features, and propose a fault diagnosis method for rolling bearings that adapts to different equipment and different operating conditions. First, we extract time domain, frequency domain, and entropy features of the original signal to form the raw signal feature set. Then, the iterative ReliefF feature screening method is used to evaluate the joint feature set, calculate the weight of each feature, remove insensitive and redundant features, and obtain a high-dimensional sensitive feature set. Finally, the WKNN classification model is used to identify bearing failure modes. The fault diagnosis model was trained using rolling bearing data from the Case Western Reserve University (CWRU), while laboratory data from the Intelligent Maintenance System (IMS), the Society of Mechanical Failure Prevention Technology (MFPT) and the engineering case data were used for testing. The results show that the model proposed in this paper has high fault diagnosis accuracy and can accurately determine the fault type after early warning. Compared with other comparison methods, the fault recognition accuracy rate is higher. And it is suitable for different working conditions and different equipment, and has good engineering application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助风中凡霜采纳,获得10
5秒前
顾矜应助唐晓秦采纳,获得10
5秒前
鸢翔flybird完成签到,获得积分10
6秒前
谦让的莆完成签到 ,获得积分10
8秒前
辣椒完成签到 ,获得积分10
17秒前
21秒前
江上清风发布了新的文献求助10
23秒前
25秒前
yk完成签到,获得积分10
25秒前
群山完成签到 ,获得积分10
26秒前
titamisulydia完成签到,获得积分10
26秒前
lixiaoxia发布了新的文献求助30
27秒前
titamisulydia发布了新的文献求助10
29秒前
32秒前
风中凡霜完成签到,获得积分10
32秒前
风中凡霜发布了新的文献求助10
37秒前
深情安青应助江上清风采纳,获得10
37秒前
安安rio发布了新的文献求助10
38秒前
Lucas应助Toxoplasma采纳,获得10
38秒前
HY完成签到 ,获得积分10
40秒前
钟意完成签到 ,获得积分10
41秒前
bkagyin应助橘子采纳,获得50
41秒前
无曲应助忧伤的半梅采纳,获得10
47秒前
48秒前
Shueason完成签到 ,获得积分10
50秒前
52秒前
yanxueyi完成签到 ,获得积分10
52秒前
zly97018发布了新的文献求助10
54秒前
56秒前
wuxiaopu发布了新的文献求助10
58秒前
橘子发布了新的文献求助50
1分钟前
平心定气完成签到 ,获得积分10
1分钟前
忧伤的半梅完成签到,获得积分10
1分钟前
wuxiaopu完成签到,获得积分10
1分钟前
隐形曼青应助yyt采纳,获得10
1分钟前
1分钟前
小小怪发布了新的文献求助10
1分钟前
和风完成签到 ,获得积分10
1分钟前
洁净缘分完成签到 ,获得积分10
1分钟前
靓丽紫真完成签到 ,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827132
求助须知:如何正确求助?哪些是违规求助? 3369487
关于积分的说明 10456400
捐赠科研通 3089248
什么是DOI,文献DOI怎么找? 1699710
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251