Process Design Strategies To Produce p-Xylene via Toluene Methylation: A Review

甲苯 催化作用 歧化 过程(计算) 化学 二甲苯 烷基转移 生化工程 工艺工程 有机化学 计算机科学 沸石 工程类 操作系统
作者
Nandana Chakinala,Anand G. Chakinala
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:60 (15): 5331-5351 被引量:37
标识
DOI:10.1021/acs.iecr.1c00625
摘要

It is envisaged that the future refineries will be reconfiguring for the direct conversion of crude oil to chemicals to improve their profitability. In this direction, the toluene methylation process offers a promising route for the production of high-value p-xylene from low-cost feedstocks such as toluene and methanol. There is a growing commercial interest in the toluene methylation process, because it can theoretically produce double the amounts of p-xylene with high selectivities, when compared with the other existing processes (such as disproportionation and transalkylation), and it can be the next-generation method of producing p-xylene. Past and current research approaches were mainly focused on improving the catalyst activity (high toluene conversion and para-selectivity) by introducing several modifying agents. However, still the major challenge of this process lies in the development of an efficient catalyst without compromising on the methylation activity and para-selectivity. In addition, catalyst deactivation is another major issue that is mainly due to the coking precursors derived from methanol conversion. To address these issues, a good understanding of the mass transfer plays a vital role in the catalyst design, as well as process design and optimization strategies. This review summarizes the fundamental aspects of possible reaction mechanisms that occur in the process, useful reaction kinetics data for the process optimization studies and scaleup, with emphasis on recent developments in the catalyst design, deactivation mechanism, and process development strategies. A future perspective is also provided related to the catalyst design and process design strategies for addressing the gaps in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助钠钾蹦采纳,获得10
1秒前
lishi完成签到,获得积分10
2秒前
HH完成签到 ,获得积分10
2秒前
邵玉莹发布了新的文献求助10
4秒前
烟花应助张涛采纳,获得10
5秒前
肖恩发布了新的文献求助10
6秒前
简单代双发布了新的文献求助10
12秒前
鲤鱼奇异果完成签到,获得积分10
22秒前
25秒前
25秒前
Misea发布了新的文献求助10
28秒前
吉吉完成签到 ,获得积分10
29秒前
简单代双完成签到,获得积分10
29秒前
眼睛大的问儿完成签到,获得积分10
30秒前
30秒前
木木发布了新的文献求助10
31秒前
暴龙战士图图完成签到,获得积分10
36秒前
钠钾蹦发布了新的文献求助10
36秒前
AAA完成签到,获得积分10
37秒前
干净雅旋发布了新的文献求助10
37秒前
田様应助动人的老黑采纳,获得10
37秒前
wei龙完成签到,获得积分10
38秒前
Herisland完成签到 ,获得积分10
38秒前
yao发布了新的文献求助10
40秒前
qiao应助crazywilliam采纳,获得10
47秒前
萝卜完成签到 ,获得积分10
48秒前
久别完成签到,获得积分10
48秒前
领导范儿应助yao采纳,获得10
49秒前
xiaosi完成签到 ,获得积分10
52秒前
木木完成签到,获得积分10
56秒前
高贵灭男发布了新的文献求助10
59秒前
大卫戴完成签到 ,获得积分10
1分钟前
Misea发布了新的文献求助10
1分钟前
情怀应助sjhksdh采纳,获得10
1分钟前
善学以致用应助Misea采纳,获得10
1分钟前
1分钟前
s1kl完成签到,获得积分10
1分钟前
幸福的向彤完成签到,获得积分10
1分钟前
缥缈的背包完成签到 ,获得积分10
1分钟前
小二郎应助钠钾蹦采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549