Study on the resolution of multi-aircraft flight conflicts based on an IDQN

工作量 趋同(经济学) 马尔可夫决策过程 计算机科学 冲突解决 过程(计算) 强化学习 运筹学 模拟 工程类 马尔可夫过程 人工智能 数学 统计 政治学 法学 经济 经济增长 操作系统
作者
Dong Sui,Weiping Xu,Kai Zhang
出处
期刊:Chinese Journal of Aeronautics [Elsevier]
卷期号:35 (2): 195-213 被引量:26
标识
DOI:10.1016/j.cja.2021.03.015
摘要

With the rapid growth of flight flow, the workload of controllers is increasing daily, and handling flight conflicts is the main workload. Therefore, it is necessary to provide more efficient conflict resolution decision-making support for controllers. Due to the limitations of existing methods, they have not been widely used. In this paper, a Deep Reinforcement Learning (DRL) algorithm is proposed to resolve multi-aircraft flight conflict with high solving efficiency. First, the characteristics of multi-aircraft flight conflict problem are analyzed and the problem is modeled based on Markov decision process. Thus, the Independent Deep Q Network (IDQN) algorithm is used to solve the model. Simultaneously, a 'downward-compatible' framework that supports dynamic expansion of the number of conflicting aircraft is designed. The model ultimately shows convergence through adequate training. Finally, the test conflict scenarios and indicators were used to verify the validity. In 700 scenarios, 85.71% of conflicts were successfully resolved, and 71.51% of aircraft can reach destinations within 150 s around original arrival times. By contrast, conflict resolution algorithm based on DRL has great advantages in solution speed. The method proposed offers the possibility of decision-making support for controllers and reduce workload of controllers in future high-density airspace environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
marketing完成签到,获得积分20
2秒前
2秒前
rym0404发布了新的文献求助10
2秒前
凶狠的期待完成签到,获得积分10
3秒前
3秒前
翠花驳回了乐乐应助
3秒前
xinxin完成签到,获得积分10
3秒前
4秒前
风趣易形完成签到,获得积分10
4秒前
赘婿应助cc采纳,获得10
5秒前
marketing发布了新的文献求助10
7秒前
7秒前
hhp完成签到,获得积分10
7秒前
YW完成签到 ,获得积分10
7秒前
8秒前
茶茶完成签到,获得积分10
8秒前
changping应助liugm采纳,获得10
10秒前
panpan完成签到,获得积分10
10秒前
共享精神应助茶茶采纳,获得10
12秒前
12秒前
烟花应助橙汁采纳,获得10
13秒前
22完成签到 ,获得积分10
14秒前
14秒前
白石杏完成签到,获得积分10
15秒前
16秒前
Banana完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
嘻嘻发布了新的文献求助10
17秒前
孔乙己完成签到,获得积分10
17秒前
keleboys完成签到 ,获得积分10
17秒前
19秒前
烟花应助庭树采纳,获得10
20秒前
20秒前
zzz发布了新的文献求助10
21秒前
猴王完成签到,获得积分10
21秒前
Ava应助tleeny采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305475
求助须知:如何正确求助?哪些是违规求助? 4451562
关于积分的说明 13852455
捐赠科研通 4339004
什么是DOI,文献DOI怎么找? 2382268
邀请新用户注册赠送积分活动 1377388
关于科研通互助平台的介绍 1344904