Multi-view Multichannel Attention Graph Convolutional Network for miRNA–disease association prediction

计算机科学 联想(心理学) 相似性(几何) 人工智能 机器学习 疾病 卷积神经网络 图形 模式识别(心理学) 数据挖掘 注意力网络 联营
作者
Xinru Tang,Jiawei Luo,Cong Shen,Zihan Lai
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:16
标识
DOI:10.1093/bib/bbab174
摘要

In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data.In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA-disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
M先生发布了新的文献求助30
刚刚
FashionBoy应助许多知识采纳,获得10
1秒前
Poyd完成签到,获得积分10
4秒前
4秒前
故意的傲玉应助tao_blue采纳,获得10
5秒前
5秒前
kid1912完成签到,获得积分0
5秒前
小马甲应助一网小海蜇采纳,获得10
8秒前
专一的笑阳完成签到 ,获得积分10
8秒前
xuesensu完成签到 ,获得积分10
12秒前
豌豆完成签到,获得积分10
13秒前
M先生完成签到,获得积分10
13秒前
14秒前
16秒前
科研通AI5应助sun采纳,获得10
16秒前
shitzu完成签到 ,获得积分10
17秒前
choco发布了新的文献求助10
19秒前
20秒前
李健的小迷弟应助sun采纳,获得10
20秒前
Jzhang应助liyuchen采纳,获得10
20秒前
魏伯安发布了新的文献求助30
20秒前
jjjjjj发布了新的文献求助30
22秒前
23秒前
伯赏诗霜发布了新的文献求助10
23秒前
糟糕的鹏飞完成签到 ,获得积分10
24秒前
24秒前
欢呼凡旋完成签到,获得积分10
25秒前
韩邹光完成签到,获得积分10
27秒前
xg发布了新的文献求助10
27秒前
28秒前
dktrrrr完成签到,获得积分10
28秒前
季生完成签到,获得积分10
31秒前
徐徐完成签到,获得积分10
31秒前
32秒前
32秒前
haku完成签到,获得积分10
34秒前
可爱的函函应助laodie采纳,获得10
36秒前
Singularity应助忆楠采纳,获得10
37秒前
38秒前
请叫我风吹麦浪应助PengHu采纳,获得30
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849