哈密顿系统
哈密顿量(控制论)
人工神经网络
相空间
变分积分器
微分方程
应用数学
运动方程
非线性系统
动力系统理论
混乱的
计算机科学
积分器
物理
数学
经典力学
数学分析
数学优化
人工智能
量子力学
热力学
带宽(计算)
计算机网络
作者
Marios Mattheakis,David Sondak,Akshunna S. Dogra,Pavlos Protopapas
出处
期刊:Physical review
[American Physical Society]
日期:2022-06-30
卷期号:105 (6)
被引量:85
标识
DOI:10.1103/physreve.105.065305
摘要
There has been a wave of interest in applying machine learning to study dynamical systems. We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems. This is an equation-driven machine learning method where the optimization process of the network depends solely on the predicted functions without using any ground truth data. The model learns solutions that satisfy, up to an arbitrarily small error, Hamilton's equations and, therefore, conserve the Hamiltonian invariants. The choice of an appropriate activation function drastically improves the predictability of the network. Moreover, an error analysis is derived and states that the numerical errors depend on the overall network performance. The Hamiltonian network is then employed to solve the equations for the nonlinear oscillator and the chaotic Hénon-Heiles dynamical system. In both systems, a symplectic Euler integrator requires two orders more evaluation points than the Hamiltonian network to achieve the same order of the numerical error in the predicted phase space trajectories.
科研通智能强力驱动
Strongly Powered by AbleSci AI