葡聚糖酶
糖苷水解酶
微生物学
生物化学
几丁质酶
酶
重组DNA
生物
昆布
异源表达
多糖
基因
作者
Yanxin Wang,Ding Li,Chaonan Dong,Yuqiang Zhao,Lei Zhang,Fan Yang,Xianfeng Ye,Yan Huang,Zhoukun Li,Zhongli Cui
标识
DOI:10.1007/s00253-021-11513-6
摘要
Some microbial-associated molecular patterns (MAMPs), like glucan oligosaccharides, can be recognized by pattern recognition receptors (PRRs) of plant to elicit further immunity response. In this study, a novel glycoside hydrolase family 55 β-1,3-glucanase (AcGluA) from Archangium sp. strain AC19 was cloned and expressed in Escherichia coli. Among the reported β-1, 3-glucanases from the glycoside hydrolase 55 family, the purified AcGluA exhibited the highest activity on laminarin at pH 6.0 and 60 °C with 112.3 U/mg. Activity of AcGluA was stable in the range of pH 4.0–9.0 and at temperatures below 60 °C. The Km and Vmax of AcGluA for laminarin were 3.5 mg/ml and 263.5 μmol/(ml·min). AcGluA hydrolyzed laminarin into a series of oligosaccharides, suggesting it was an endo-β-1,3-glucanase. The high dose of oligosaccharides (1600 mg/l) had conspicuous biocontrol efficacy on the defense of rice seedlings to Magnaporthe oryzae, which provided a new idea for the development of green biopesticide. Key points • The AcGluA was determined bacteria-derived β-1,3-glucanases in the GH55 family.• The AcGluA showed the highest activity towards laminarin among reported GH55 family.• The hydrolysates of laminarin showed conspicuous biocontrol efficacy to M. oryzae.
科研通智能强力驱动
Strongly Powered by AbleSci AI