毛囊
细胞生物学
干细胞
生物
癌症研究
转录因子
体内
细胞生长
内生
细胞分化
化学
表型
荧光素酶
河马信号通路
内科学
基因表达调控
雄激素受体
再生(生物学)
细胞
体外
下调和上调
基因表达
脱发
作者
Xuewen Chen,Jingxiu Chai,Xuan Wang,Leimeng Gan,Qing Zhang,Hao Luo,Ling Wu,Yuchong Chen
标识
DOI:10.1186/s13287-026-04905-w
摘要
Abstract Background Hair follicle stem cells (HFSCs) in androgenetic alopecia (AGA) patients exhibit functional impairment, reduced quantity, dysregulation, and androgen sensitivity, which hinder therapeutic strategies targeting HFSCs activation for hair regeneration. This study aims to elucidate the molecular mechanisms underlying HFSCs dysfunction in AGA and identify novel therapeutic targets. Methods We compared the expression of insulin-like growth factor 1 (IGF-1) in hair follicle tissues between AGA patients and healthy controls, analyzing transcriptional and protein-level differences. Bioinformatics, luciferase assays, and correlation analyses were employed to investigate the AR/miR-128-3p/IGF-1 pathway. Mechanistic studies were conducted using dermal papilla cells (DPCs) from both AGA patients and normal donors, which included RNA interaction assays and functional validation. Furthermore, the mechanism was validated by assessing the phenotypic changes in HFSCs co-cultured experiments. In vivo experiments in AGA mice were performed to evaluate hair follicle regeneration following ASLNC168501 overexpression. Results IGF-1 expression was markedly reduced in hair follicles of AGA patients, with transcriptional alterations occurring later than changes at the protein-level alterations. Dysregulation of the AR/miR-128-3p/IGF-1 pathway in DPCs was identified as a key driver of HFSCs dysfunction: AR transcriptionally activates miR-128-3p, which in turn suppresses IGF-1 by binding to its 3’UTR. Consequently, the ability of IGF-1 to sustain and support HFSCs activity is impaired. The endogenous ASLNC168501 functions as a ceRNA, sequestering miR-128-3p and thereby restoring IGF-1 expression and secretion. Exogenous overexpression of ASLNC168501 in DPCs significantly promoted the self-renewal, proliferative and differentiation potential of co-cultured HFSCs in vitro and reversed hair follicle atrophy in AGA mice. Conclusions Our findings demonstrate that loss of ASLNC168501 accelerates the progression of AGA by activating AR/miR-128-3p/IGF-1 pathway activation. Acting as a pathway-independent RNA, ASLNC168501 holds a target significant therapeutic potential for restoring HFSCs function and promoting hair follicle regeneration. This finding highlights a novel molecular target and contributes to the advancement of precision medicine strategies for androgen-related alopecia.
科研通智能强力驱动
Strongly Powered by AbleSci AI