亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review

乳腺癌 乳房成像 乳腺摄影术 数字乳腺摄影术 医学 乳腺癌筛查 人工智能 风险评估 医学物理学 癌症 计算机科学 机器学习 内科学 计算机安全
作者
Aimilia Gastounioti,Shyam Desai,Vinayak S. Ahluwalia,Emily F. Conant,Despina Kontos
出处
期刊:Breast Cancer Research [Springer Nature]
卷期号:24 (1) 被引量:29
标识
DOI:10.1186/s13058-022-01509-z
摘要

Improved breast cancer risk assessment models are needed to enable personalized screening strategies that achieve better harm-to-benefit ratio based on earlier detection and better breast cancer outcomes than existing screening guidelines. Computational mammographic phenotypes have demonstrated a promising role in breast cancer risk prediction. With the recent exponential growth of computational efficiency, the artificial intelligence (AI) revolution, driven by the introduction of deep learning, has expanded the utility of imaging in predictive models. Consequently, AI-based imaging-derived data has led to some of the most promising tools for precision breast cancer screening.This review aims to synthesize the current state-of-the-art applications of AI in mammographic phenotyping of breast cancer risk. We discuss the fundamentals of AI and explore the computing advancements that have made AI-based image analysis essential in refining breast cancer risk assessment. Specifically, we discuss the use of data derived from digital mammography as well as digital breast tomosynthesis. Different aspects of breast cancer risk assessment are targeted including (a) robust and reproducible evaluations of breast density, a well-established breast cancer risk factor, (b) assessment of a woman's inherent breast cancer risk, and (c) identification of women who are likely to be diagnosed with breast cancers after a negative or routine screen due to masking or the rapid and aggressive growth of a tumor. Lastly, we discuss AI challenges unique to the computational analysis of mammographic imaging as well as future directions for this promising research field.We provide a useful reference for AI researchers investigating image-based breast cancer risk assessment while indicating key priorities and challenges that, if properly addressed, could accelerate the implementation of AI-assisted risk stratification to future refine and individualize breast cancer screening strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助尊敬的臻采纳,获得10
2秒前
9秒前
YUEER发布了新的文献求助10
13秒前
三年三班三井寿完成签到,获得积分10
14秒前
15秒前
Aurora发布了新的文献求助10
19秒前
22秒前
YUEER完成签到,获得积分20
25秒前
zym发布了新的文献求助10
26秒前
Aurora完成签到,获得积分10
27秒前
IfItheonlyone完成签到 ,获得积分10
31秒前
领导范儿应助科研通管家采纳,获得10
38秒前
王叮叮关注了科研通微信公众号
48秒前
潇洒问雁完成签到 ,获得积分10
1分钟前
万能图书馆应助zym采纳,获得10
1分钟前
1分钟前
啾啾发布了新的文献求助10
1分钟前
独特的斑马完成签到 ,获得积分10
1分钟前
冷静灵波完成签到 ,获得积分10
1分钟前
小二郎应助啾啾采纳,获得10
1分钟前
Alien完成签到,获得积分20
1分钟前
Alien发布了新的文献求助10
1分钟前
啾啾完成签到,获得积分10
2分钟前
qianyixingchen完成签到 ,获得积分10
2分钟前
蔷薇完成签到 ,获得积分10
2分钟前
闪闪穆完成签到 ,获得积分10
2分钟前
小张完成签到 ,获得积分10
2分钟前
共享精神应助Alien采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
仁爱的甜瓜完成签到 ,获得积分10
2分钟前
无水乙醚完成签到,获得积分10
3分钟前
Tree完成签到 ,获得积分10
3分钟前
3分钟前
lamy发布了新的文献求助10
3分钟前
坦率的语芙完成签到,获得积分10
3分钟前
lamy完成签到,获得积分10
3分钟前
可可完成签到 ,获得积分10
3分钟前
菜根谭完成签到 ,获得积分10
3分钟前
lianyang完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880437
求助须知:如何正确求助?哪些是违规求助? 6572351
关于积分的说明 15689876
捐赠科研通 5000124
什么是DOI,文献DOI怎么找? 2694209
邀请新用户注册赠送积分活动 1636018
关于科研通互助平台的介绍 1593447