Designing Ultra-flat Bands in Twisted Bilayer Materials at Large Twist Angles: Theory and Application to Two-Dimensional Indium Selenide

扭转 双层石墨烯 双层 堆积 凝聚态物理 带隙 平坦度(宇宙学) 电子能带结构 化学 物理 纳米技术 几何学 材料科学 石墨烯 量子力学 数学 生物化学 有机化学 宇宙学
作者
Shengdan Tao,Xuanlin Zhang,Jiaojiao Zhu,Pimo He,Shengyuan A. Yang,Yunhao Lu,Su‐Huai Wei
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (9): 3949-3956 被引量:43
标识
DOI:10.1021/jacs.1c11953
摘要

Inter-twisted bilayers of two-dimensional (2D) materials can host low-energy flat bands, which offer opportunity to investigate many intriguing physics associated with strong electron correlations. In the existing systems, ultra-flat bands only emerge at very small twist angles less than a few degrees, which poses challenge for experimental study and practical applications. Here, we propose a new design principle to achieve low-energy ultra-flat bands with increased twist angles. The key condition is to have a 2D semiconducting material with large energy difference of band edges controlled by stacking. We show that the interlayer interaction leads to defect-like states under twisting, which forms a flat band in the semiconducting band gap with dispersion strongly suppressed by the large energy barriers in the moire superlattice even for large twist angles. We explicitly demonstrate our idea in bilayer alpha-In2Se3 and bilayer InSe. For bilayer alpha-In2Se3, we show that a twist angle -13.2 degree is sufficient to achieve the band flatness comparable to that of twist bilayer graphene at the magic angle -1.1 degree. In addition, the appearance of ultra-flat bands here is not sensitive to the twist angle as in bilayer graphene, and it can be further controlled by external gate fields. Our finding provides a new route to achieve ultra-flat bands other than reducing the twist angles and paves the way towards engineering such flat bands in a large family of 2D materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hejinyin完成签到,获得积分10
刚刚
1秒前
zzz发布了新的文献求助10
1秒前
btcat完成签到,获得积分0
1秒前
善学以致用应助刘娟采纳,获得10
1秒前
没写名字233完成签到 ,获得积分10
2秒前
健壮惋清完成签到 ,获得积分10
2秒前
Jackson完成签到,获得积分10
2秒前
3秒前
第五明月完成签到,获得积分10
3秒前
3秒前
4秒前
王潇瀟发布了新的文献求助10
4秒前
wen发布了新的文献求助10
4秒前
青山发布了新的文献求助20
4秒前
4秒前
英俊的铭应助ziyue采纳,获得10
4秒前
loser发布了新的文献求助10
4秒前
大个应助cyy1226采纳,获得10
4秒前
5秒前
5秒前
zx完成签到,获得积分10
5秒前
乐乐应助Daniel2010采纳,获得100
6秒前
yhb完成签到,获得积分10
6秒前
7秒前
7秒前
安静代萱完成签到 ,获得积分10
7秒前
victorchen完成签到,获得积分10
7秒前
哈哈哈哈发布了新的文献求助10
8秒前
失眠的契完成签到,获得积分10
8秒前
9秒前
CC完成签到,获得积分10
9秒前
10秒前
失眠的香菇完成签到 ,获得积分10
10秒前
11秒前
11秒前
超级的鞅发布了新的文献求助10
11秒前
daniel发布了新的文献求助10
11秒前
小任吃不胖完成签到,获得积分10
11秒前
LmyHusband发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4414159
求助须知:如何正确求助?哪些是违规求助? 3897255
关于积分的说明 12121604
捐赠科研通 3542904
什么是DOI,文献DOI怎么找? 1944279
邀请新用户注册赠送积分活动 984670
科研通“疑难数据库(出版商)”最低求助积分说明 881061