已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-granular linguistic distribution-based group decision making method for renewable energy technology selection

计算机科学 可再生能源 选择(遗传算法) 风险分析(工程) 运筹学 人工智能 管理科学 数学 经济 工程类 业务 电气工程
作者
Yingying Liang,Yanbing Ju,Luis Martínez,Peiwu Dong,Aihua Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:116: 108379-108379 被引量:14
标识
DOI:10.1016/j.asoc.2021.108379
摘要

The scarcity of resources requires a decrease in nonrenewable energy consumption, which progressively promotes the development of renewable energy due to its immense potential and environmental friendliness. Hence, the use of renewable energy technology is critical for realizing the economic effect, the environment effect and the social benefit unified. Generally, renewable energy technology selection is treated as a multiple criteria group decision making problem. However, decision makers are not allowed to express multiple preferences via personalized linguistic distribution assessments deliberating on diverse criteria in the existing approaches. This work proposes a multi-granular linguistic distribution-based group decision-making method by linking multi-granular linguistic distribution assessments and LINMAP (Linear Programming Technique for Multidimensional Analysis of Preference) method with a mathematical model that can simultaneously yield the credible weights of the considered criteria and prioritize the sequence of optimal renewable energy technologies. To this end, the linguistic distribution-based Hellinger distance measure and linguistic hierarchy-based multi-granular linguistic distribution transformation method are proposed. The decision framework is applied to a case study of power generation-based technology selection, generating reliable criteria weights and yielding acceptable outcomes based on collected assessments. Eventually, the sensitivity analysis and comparative analysis are conducted to verify the feasibility and practicability of our proposal. This flexible decision support technique is geared towards managers and strives to provide reference and inspiration for renewable energy technology selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
周什么园完成签到,获得积分10
2秒前
zbx发布了新的文献求助10
3秒前
马华化完成签到,获得积分10
4秒前
5秒前
黄滔发布了新的文献求助30
5秒前
wax发布了新的文献求助10
12秒前
善学以致用应助栀璃鸳挽采纳,获得10
12秒前
坦率的丹烟完成签到 ,获得积分10
13秒前
风中的棒棒糖完成签到,获得积分10
14秒前
希望天下0贩的0应助an采纳,获得10
14秒前
科研通AI5应助谨慎的芹菜采纳,获得10
14秒前
大个应助tdtk采纳,获得10
19秒前
21秒前
黄滔发布了新的文献求助10
21秒前
22秒前
盯盯盯完成签到 ,获得积分10
25秒前
26秒前
jerry发布了新的文献求助10
29秒前
29秒前
32秒前
weddcf发布了新的文献求助10
33秒前
33秒前
酷波er应助EgbertW采纳,获得10
34秒前
踏实的怜菡完成签到 ,获得积分10
35秒前
李大了发布了新的文献求助10
35秒前
39秒前
lyy完成签到 ,获得积分10
40秒前
44秒前
46秒前
47秒前
48秒前
50秒前
nulinuli发布了新的文献求助10
51秒前
Hyg完成签到 ,获得积分10
52秒前
lily发布了新的文献求助10
53秒前
tdtk发布了新的文献求助10
53秒前
hahaha发布了新的文献求助10
54秒前
今后应助拥抱了一下采纳,获得10
55秒前
002完成签到,获得积分10
57秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788045
求助须知:如何正确求助?哪些是违规求助? 3333573
关于积分的说明 10262471
捐赠科研通 3049374
什么是DOI,文献DOI怎么找? 1673536
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477