计算机科学
可再生能源
选择(遗传算法)
风险分析(工程)
运筹学
人工智能
管理科学
数学
经济
工程类
业务
电气工程
作者
Yingying Liang,Yanbing Ju,Luis Martínez,Peiwu Dong,Aihua Wang
标识
DOI:10.1016/j.asoc.2021.108379
摘要
The scarcity of resources requires a decrease in nonrenewable energy consumption, which progressively promotes the development of renewable energy due to its immense potential and environmental friendliness. Hence, the use of renewable energy technology is critical for realizing the economic effect, the environment effect and the social benefit unified. Generally, renewable energy technology selection is treated as a multiple criteria group decision making problem. However, decision makers are not allowed to express multiple preferences via personalized linguistic distribution assessments deliberating on diverse criteria in the existing approaches. This work proposes a multi-granular linguistic distribution-based group decision-making method by linking multi-granular linguistic distribution assessments and LINMAP (Linear Programming Technique for Multidimensional Analysis of Preference) method with a mathematical model that can simultaneously yield the credible weights of the considered criteria and prioritize the sequence of optimal renewable energy technologies. To this end, the linguistic distribution-based Hellinger distance measure and linguistic hierarchy-based multi-granular linguistic distribution transformation method are proposed. The decision framework is applied to a case study of power generation-based technology selection, generating reliable criteria weights and yielding acceptable outcomes based on collected assessments. Eventually, the sensitivity analysis and comparative analysis are conducted to verify the feasibility and practicability of our proposal. This flexible decision support technique is geared towards managers and strives to provide reference and inspiration for renewable energy technology selection.
科研通智能强力驱动
Strongly Powered by AbleSci AI