Radiomics analysis of ultrasound to predict recurrence of hepatocellular carcinoma after microwave ablation

医学 接收机工作特性 肝细胞癌 无线电技术 回顾性队列研究 放射科 超声波 内科学 肿瘤科
作者
Jiapeng Wu,Wenzhen Ding,Yuling Wang,Sisi Liu,Xiaoqian Zhang,Qi Yang,Wenjia Cai,Xiaoling Yu,Fangyi Liu,Dexing Kong,Hui Zhong,Jie Yu,Ping Liang
出处
期刊:International Journal of Hyperthermia [Taylor & Francis]
卷期号:39 (1): 595-604 被引量:11
标识
DOI:10.1080/02656736.2022.2062463
摘要

Objective To develop and validate an ultrasonic radiomics model for predicting the recurrence and differentiation of hepatocellular carcinoma (HCC). Convolutional neural network (CNN) ResNet 18 and Pyradiomics were used to analyze gray-scale-ultrasonic images to predict the prognosis and degree of differentiation of HCC.Methods This retrospective study enrolled 513 patients with HCC who underwent preoperative grayscale-ultrasonic imaging, and their clinical characteristics were observed. Patients were randomly divided into training (n = 413) and validation (n = 100) cohorts. CNN ResNet 18 and Pyradiomics were used to analyze ultrasonic images of HCC and peritumoral images to develop a prognostic and differentiation model. Clinical characteristics were integrated into the radiomics model and patients were stratified into high- and low-risk groups. The predictive effect was evaluated using the C-index and receiver operating characteristic (ROC) curve.Results The model combined with ResNet 18 and clinical characteristics achieved a good predictive ability. The C-indices of early recurrence (ER), late recurrence (LR), and recurrence-free survival (RFS) were 0.695 (0.561–0.789), 0.715 (0.623–0.800) and 0.721 (0.647–0.795), respectively, in the validation cohort, which was superior to the clinical model and ultrasonic semantic model. The model could stratify patients into high- and low-risk groups, which showed significant differences (p < 0.001) in ER, LR, and RFS. The area under the curve for predicting the degree of HCC differentiation was 0.855 and 0.709 in the training and validation cohorts, respectively.Conclusion We developed and validated a radiomics model to predict HCC recurrence and HCC differentiation, which could also acquire pathological information in a noninvasive manner.KEY RESULTSA hepatocellular carcinoma (HCC) prognostic prediction model was developed and validated by convolutional neural network (CNN) ResNet 18-based gray-scale ultrasound (US).A differentiation of HCC prediction model was developed for preoperative prediction avoiding invasive operation.Compared with Pyradiomics, CNN ResNet was more suitable for extracting information from US images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang08完成签到,获得积分10
1秒前
宁铛完成签到 ,获得积分10
1秒前
科研通AI5应助izumi采纳,获得10
4秒前
4秒前
江铭完成签到,获得积分10
4秒前
4秒前
lym97完成签到 ,获得积分10
5秒前
eric发布了新的文献求助10
5秒前
完美世界应助sid采纳,获得10
7秒前
下文献的蜉蝣完成签到 ,获得积分10
9秒前
cc发布了新的文献求助10
9秒前
烟花应助KK采纳,获得10
9秒前
牛八先生完成签到,获得积分10
11秒前
深情夏彤完成签到,获得积分10
12秒前
bb发布了新的文献求助10
12秒前
残幻应助Matthewwt采纳,获得10
15秒前
英姑应助彪壮的青雪采纳,获得10
16秒前
笨笨芯举报牛奶开水求助涉嫌违规
17秒前
田様应助eric采纳,获得30
17秒前
17秒前
lab完成签到 ,获得积分0
17秒前
18秒前
长风完成签到,获得积分10
18秒前
19秒前
狂野静曼完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
Hello应助文与凯采纳,获得10
22秒前
shiroro完成签到,获得积分10
22秒前
chy完成签到 ,获得积分10
23秒前
调皮冰旋发布了新的文献求助10
23秒前
kingwill应助ZZ采纳,获得20
24秒前
筱煜发布了新的文献求助10
25秒前
26秒前
Jasper应助MoNeng采纳,获得30
26秒前
茶包发布了新的文献求助10
26秒前
27秒前
izumi发布了新的文献求助10
27秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812498
求助须知:如何正确求助?哪些是违规求助? 3357038
关于积分的说明 10384989
捐赠科研通 3074237
什么是DOI,文献DOI怎么找? 1688682
邀请新用户注册赠送积分活动 812296
科研通“疑难数据库(出版商)”最低求助积分说明 766986