The value of personalized dispatch in O2O on-demand delivery services

价值(数学) 计算机科学 运筹学 业务 环境经济学 经济 数学 机器学习
作者
Jiawei Tao,Hongyan Dai,Weiwei Chen,Hai Jiang
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:304 (3): 1022-1035 被引量:31
标识
DOI:10.1016/j.ejor.2022.05.019
摘要

• We discover that the delivery speed and delivery capacity of the crowd-sourced drivers vary considerably. • We build two personalized models to learn the behavior of crowd-sourced drivers. • We integrate the personalized models into the order assignment and routing model as a predict-while-optimize model. • We provide computational results on data from one mainstream O2O platform in China. • We show the values of personalization in O2O on-demand services. In online-to-offline (O2O) on-demand services, customers place orders online and the O2O platform delivers products from stores to customers within a prescribed time. The platform usually hires crowd-sourced drivers as a cost-effective option owing to their flexibility. However, the delivery speed and delivery capacity of the crowd-sourced drivers vary considerably. This service inconsistency brings challenges in precisely matching the delivery supply and customer demand, which may significantly decrease the delivery efficiency. This study aims to address the challenges by proposing a personalized dispatch model, which integrates the order and driver’s characteristics in the order assignment and routing decisions. To achieve this objective, two machine learning-based models are proposed to forecast the delivery speed of individual drivers in real time and customize their delivery capacity dynamically to develop a portrait of each driver’s behaviour. Next, a personalized O2O order assignment and routing model is proposed with the integration of the two aforementioned models. We validate our model with a real dataset of one mainstream O2O platform in China. We run a comprehensive simulation to show the improvement in terms of on-time ratio and average delay time brought by the personalization of each characteristic, namely, delivery speed and delivery capacity. We then show that the proposed personalized model can reduce the average delay by 21.60% through comparison with actual routing decisions by the drivers,. The theoretical and numerical results shed light on the delivery management of the O2O on-demand services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yicui发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
朱洪帆发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
13秒前
CYT完成签到,获得积分10
15秒前
华仔应助yicui采纳,获得10
17秒前
wol007完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
liang完成签到 ,获得积分10
28秒前
光之美少女完成签到 ,获得积分10
32秒前
HJJHJH发布了新的文献求助10
32秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
36秒前
量子星尘发布了新的文献求助10
42秒前
sun完成签到,获得积分10
47秒前
小刺猬完成签到,获得积分10
48秒前
俏皮的老城完成签到 ,获得积分10
48秒前
lhn完成签到 ,获得积分10
48秒前
苗涓完成签到 ,获得积分10
49秒前
粗心的chen完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
49秒前
陈曦读研版完成签到 ,获得积分20
50秒前
绵羊座鸭梨完成签到 ,获得积分10
51秒前
54秒前
Bi完成签到,获得积分10
56秒前
梦里的大子刊完成签到 ,获得积分10
57秒前
verymiao完成签到 ,获得积分10
58秒前
谢同学完成签到 ,获得积分10
59秒前
baa完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
调皮平蓝完成签到,获得积分10
1分钟前
猪鼓励完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
飞57完成签到,获得积分10
1分钟前
GG爆完成签到,获得积分10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658456
求助须知:如何正确求助?哪些是违规求助? 4821768
关于积分的说明 15081508
捐赠科研通 4816942
什么是DOI,文献DOI怎么找? 2577824
邀请新用户注册赠送积分活动 1532666
关于科研通互助平台的介绍 1491364