Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis

医学 逻辑回归 胰腺癌 无线电技术 支持向量机 接收机工作特性 人工智能 置信区间 放射科 内科学 核医学 癌症 计算机科学
作者
Sovanlal Mukherjee,Anurima Patra,Hala Khasawneh,Panagiotis Korfiatis,Naveen Rajamohan,Garima Suman,Shounak Majumder,Ananya Panda,Matthew P. Johnson,Nicholas B. Larson,Darryl Wright,Timothy L. Kline,Joel G. Fletcher,Suresh T. Chari,Ajit H. Goenka
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:163 (5): 1435-1446.e3 被引量:98
标识
DOI:10.1053/j.gastro.2022.06.066
摘要

Background & Aims

Our purpose was to detect pancreatic ductal adenocarcinoma (PDAC) at the prediagnostic stage (3–36 months before clinical diagnosis) using radiomics-based machine-learning (ML) models, and to compare performance against radiologists in a case-control study.

Methods

Volumetric pancreas segmentation was performed on prediagnostic computed tomography scans (CTs) (median interval between CT and PDAC diagnosis: 398 days) of 155 patients and an age-matched cohort of 265 subjects with normal pancreas. A total of 88 first-order and gray-level radiomic features were extracted and 34 features were selected through the least absolute shrinkage and selection operator–based feature selection method. The dataset was randomly divided into training (292 CTs: 110 prediagnostic and 182 controls) and test subsets (128 CTs: 45 prediagnostic and 83 controls). Four ML classifiers, k-nearest neighbor (KNN), support vector machine (SVM), random forest (RM), and extreme gradient boosting (XGBoost), were evaluated. Specificity of model with highest accuracy was further validated on an independent internal dataset (n = 176) and the public National Institutes of Health dataset (n = 80). Two radiologists (R4 and R5) independently evaluated the pancreas on a 5-point diagnostic scale.

Results

Median (range) time between prediagnostic CTs of the test subset and PDAC diagnosis was 386 (97–1092) days. SVM had the highest sensitivity (mean; 95% confidence interval) (95.5; 85.5–100.0), specificity (90.3; 84.3–91.5), F1-score (89.5; 82.3–91.7), area under the curve (AUC) (0.98; 0.94–0.98), and accuracy (92.2%; 86.7–93.7) for classification of CTs into prediagnostic versus normal. All 3 other ML models, KNN, RF, and XGBoost, had comparable AUCs (0.95, 0.95, and 0.96, respectively). The high specificity of SVM was generalizable to both the independent internal (92.6%) and the National Institutes of Health dataset (96.2%). In contrast, interreader radiologist agreement was only fair (Cohen's kappa 0.3) and their mean AUC (0.66; 0.46–0.86) was lower than each of the 4 ML models (AUCs: 0.95–0.98) (P < .001). Radiologists also recorded false positive indirect findings of PDAC in control subjects (n = 83) (7% R4, 18% R5).

Conclusions

Radiomics-based ML models can detect PDAC from normal pancreas when it is beyond human interrogation capability at a substantial lead time before clinical diagnosis. Prospective validation and integration of such models with complementary fluid-based biomarkers has the potential for PDAC detection at a stage when surgical cure is a possibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fhw发布了新的文献求助200
刚刚
栗子完成签到 ,获得积分10
1秒前
FashionBoy应助积极的初南采纳,获得10
1秒前
灵巧的导师完成签到,获得积分10
2秒前
斯文败类应助翼静采纳,获得10
2秒前
舒适的紫丝完成签到,获得积分10
2秒前
你说要叫啥完成签到,获得积分10
3秒前
静静子发布了新的文献求助10
3秒前
顺心紫翠完成签到 ,获得积分10
3秒前
在水一方应助麦芒拾音柴采纳,获得10
4秒前
4秒前
Kakoala发布了新的文献求助10
5秒前
鲁鲁完成签到,获得积分10
6秒前
zhx完成签到,获得积分10
6秒前
朱权圣完成签到,获得积分10
7秒前
Laisy完成签到,获得积分10
7秒前
Jack完成签到,获得积分10
8秒前
明理萃完成签到 ,获得积分10
8秒前
8秒前
科研通AI5应助舒适路人采纳,获得10
8秒前
8秒前
Twikky完成签到,获得积分10
8秒前
执着跳跳糖完成签到 ,获得积分10
9秒前
小橙子完成签到,获得积分10
9秒前
wure10完成签到 ,获得积分10
9秒前
9秒前
郑波涛完成签到,获得积分10
10秒前
1609855535完成签到,获得积分10
10秒前
10秒前
hoongyan完成签到 ,获得积分10
10秒前
11秒前
拜拜雪公主完成签到 ,获得积分10
11秒前
一只百味鸡完成签到,获得积分10
11秒前
Ni发布了新的文献求助10
11秒前
12秒前
喜悦的尔阳完成签到,获得积分10
12秒前
令狐冲完成签到,获得积分10
13秒前
xing完成签到,获得积分10
13秒前
香蕉冰兰完成签到,获得积分10
14秒前
Luckqi6688完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785022
求助须知:如何正确求助?哪些是违规求助? 3330388
关于积分的说明 10245821
捐赠科研通 3045781
什么是DOI,文献DOI怎么找? 1671722
邀请新用户注册赠送积分活动 800709
科研通“疑难数据库(出版商)”最低求助积分说明 759621