Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis

医学 逻辑回归 胰腺癌 无线电技术 支持向量机 接收机工作特性 人工智能 置信区间 放射科 内科学 核医学 癌症 计算机科学
作者
Sovanlal Mukherjee,Anurima Patra,Hala Khasawneh,Panagiotis Korfiatis,Naveen Rajamohan,Garima Suman,Shounak Majumder,Ananya Panda,Matthew P. Johnson,Nicholas B. Larson,Darryl Wright,Timothy L. Kline,Joel G. Fletcher,Suresh T. Chari,Ajit H. Goenka
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:163 (5): 1435-1446.e3 被引量:111
标识
DOI:10.1053/j.gastro.2022.06.066
摘要

Background & Aims

Our purpose was to detect pancreatic ductal adenocarcinoma (PDAC) at the prediagnostic stage (3–36 months before clinical diagnosis) using radiomics-based machine-learning (ML) models, and to compare performance against radiologists in a case-control study.

Methods

Volumetric pancreas segmentation was performed on prediagnostic computed tomography scans (CTs) (median interval between CT and PDAC diagnosis: 398 days) of 155 patients and an age-matched cohort of 265 subjects with normal pancreas. A total of 88 first-order and gray-level radiomic features were extracted and 34 features were selected through the least absolute shrinkage and selection operator–based feature selection method. The dataset was randomly divided into training (292 CTs: 110 prediagnostic and 182 controls) and test subsets (128 CTs: 45 prediagnostic and 83 controls). Four ML classifiers, k-nearest neighbor (KNN), support vector machine (SVM), random forest (RM), and extreme gradient boosting (XGBoost), were evaluated. Specificity of model with highest accuracy was further validated on an independent internal dataset (n = 176) and the public National Institutes of Health dataset (n = 80). Two radiologists (R4 and R5) independently evaluated the pancreas on a 5-point diagnostic scale.

Results

Median (range) time between prediagnostic CTs of the test subset and PDAC diagnosis was 386 (97–1092) days. SVM had the highest sensitivity (mean; 95% confidence interval) (95.5; 85.5–100.0), specificity (90.3; 84.3–91.5), F1-score (89.5; 82.3–91.7), area under the curve (AUC) (0.98; 0.94–0.98), and accuracy (92.2%; 86.7–93.7) for classification of CTs into prediagnostic versus normal. All 3 other ML models, KNN, RF, and XGBoost, had comparable AUCs (0.95, 0.95, and 0.96, respectively). The high specificity of SVM was generalizable to both the independent internal (92.6%) and the National Institutes of Health dataset (96.2%). In contrast, interreader radiologist agreement was only fair (Cohen's kappa 0.3) and their mean AUC (0.66; 0.46–0.86) was lower than each of the 4 ML models (AUCs: 0.95–0.98) (P < .001). Radiologists also recorded false positive indirect findings of PDAC in control subjects (n = 83) (7% R4, 18% R5).

Conclusions

Radiomics-based ML models can detect PDAC from normal pancreas when it is beyond human interrogation capability at a substantial lead time before clinical diagnosis. Prospective validation and integration of such models with complementary fluid-based biomarkers has the potential for PDAC detection at a stage when surgical cure is a possibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鱼清完成签到,获得积分10
1秒前
皮灵犀发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
xiaoqiang009发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
JoJo发布了新的文献求助10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
sutu应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
Meyako应助科研通管家采纳,获得10
6秒前
加油冲完成签到,获得积分10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
慕青应助Kannan采纳,获得10
7秒前
kenhahahaha发布了新的文献求助10
8秒前
duoduo完成签到,获得积分10
8秒前
WL完成签到,获得积分10
8秒前
9秒前
9秒前
AOPs完成签到,获得积分10
9秒前
wd发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助Jim采纳,获得10
11秒前
合适的忆枫完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550040
求助须知:如何正确求助?哪些是违规求助? 3980315
关于积分的说明 12323048
捐赠科研通 3649311
什么是DOI,文献DOI怎么找? 2009871
邀请新用户注册赠送积分活动 1045168
科研通“疑难数据库(出版商)”最低求助积分说明 933682