Sensitive detection of stage I lung adenocarcinoma using plasma cell-free DNA breakpoint motif profiling

腺癌 肿瘤科 队列 医学 内科学 阶段(地层学) 肺癌 逻辑回归 转移 病理 癌症 生物 古生物学
作者
Wei Guo,Xin Chen,Rui Liu,Naixin Liang,Qianli Ma,Hua Bao,Xiuxiu Xu,Xue Wu,S Samuel Yang,Yang Shao,Fengwei Tan,Qi Xue,Shugeng Gao,Jie He
出处
期刊:EBioMedicine [Elsevier]
卷期号:81: 104131-104131 被引量:63
标识
DOI:10.1016/j.ebiom.2022.104131
摘要

Early diagnosis benefits lung cancer patients with higher survival, but most patients are diagnosed after metastasis. Although cell-free DNA (cfDNA) analysis holds promise, its sensitivity for detecting early-stage lung cancer is unsatisfying. We leveraged cfDNA fragmentomics to develop a predictive model for invasive stage I lung adenocarcinoma (LUAD).292 stage I LUAD patients from three medical centers were included together with 230 healthy controls whose plasma cfDNA samples were profiled by whole-genome sequencing (WGS). Multiple cfDNA fragmentomic motif features and machine learning models were compared in the training cohort to select the best model. Model performance was assessed in the internal and external validation cohorts and an additional dataset.A logistic regression model using the 6bp-breakpoint-motif feature was selected. It yielded 98·0% sensitivity and 94·7% specificity in the internal validation cohort [Area Under the Curve (AUC): 0·985], while 92·5% sensitivity and 90·0% specificity were achieved in the external validation cohort (AUC: 0·954). It is sensitive for early-stage (100% sensitivity for minimally invasive adenocarcinoma, MIA) and <1 cm (92·9%-97·7% sensitivity) tumors. The predictive power remained high when reducing sequencing depth to 0·5× (AUC: 0·977 and 0·931 for internal and external cohorts).Here we have established a cfDNA breakpoint motif-based model for detecting early-stage LUAD, including MIA and very small-size tumors, shedding light on early cancer diagnosis in clinical practice.National Key R&D Program of China; National Natural Science Foundation of China; CAMS Initiative for Innovative Medicine; Special Research Fund for Central Universities, Peking Union Medical College; Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences; Beijing Hope Run Special Fund of Cancer Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
殷一丹完成签到 ,获得积分10
1秒前
Krstal完成签到,获得积分10
1秒前
冬灵完成签到,获得积分10
2秒前
3秒前
3秒前
白江虎完成签到,获得积分20
3秒前
3秒前
3秒前
冬灵发布了新的文献求助10
6秒前
调皮绿蕊完成签到,获得积分10
6秒前
6秒前
7秒前
沉静傥完成签到,获得积分10
8秒前
cloud发布了新的文献求助10
8秒前
懒洋洋发布了新的文献求助10
8秒前
9秒前
王晗关注了科研通微信公众号
9秒前
充电宝应助姜且采纳,获得10
9秒前
可爱馒头发布了新的文献求助10
10秒前
11秒前
桃子不是涛完成签到,获得积分10
13秒前
14秒前
结实青文完成签到 ,获得积分10
14秒前
15秒前
淳之风完成签到,获得积分10
15秒前
小雒雒完成签到,获得积分10
16秒前
小木完成签到,获得积分10
17秒前
18秒前
科研通AI6应助顺利兰采纳,获得10
18秒前
19秒前
19秒前
woxbin发布了新的文献求助10
20秒前
曾经的初雪完成签到 ,获得积分10
20秒前
20秒前
21秒前
李健应助清江鱼采纳,获得10
21秒前
老实的大白菜真实的钥匙完成签到,获得积分10
21秒前
慕念完成签到,获得积分10
21秒前
JamesPei应助会撒娇的金毛采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536778
求助须知:如何正确求助?哪些是违规求助? 4624429
关于积分的说明 14591955
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2502008
邀请新用户注册赠送积分活动 1480808
关于科研通互助平台的介绍 1451989