亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybridization of ResNet with YOLO classifier for automated paddy leaf disease recognition: An optimized model

深度学习 分类器(UML) 人工智能 分割 机器学习 残差神经网络 模式识别(心理学) 计算机科学 水田 农业工程 作物 农学 生物 工程类
作者
Gangadevi Ganesan,C. Jayakumar
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:39 (7): 1085-1109 被引量:29
标识
DOI:10.1002/rob.22089
摘要

Abstract Paddy is the most significant crop utilized by more than 2.6 billion people. The paddy crops are affected by various diseases that are unidentified and reduced the production of crop yield. Nowadays, the plants diseases and pests spread increasingly due to the climate change, trade, and globalization. The plant pathogens can be viral, fungal, nematodes or bacterial that affects all parts of the plants. The challenging tasks are to determine the symptoms and identify the controlling measures of the plant diseases. The plant leaves can be affected by numerous diseases, which results in destruction in terms of crop field to various social and economic aspects. The deep structured architectures and machine learning are implemented in the conventional models for detecting the leaf diseases. Hence, the main intention of this study is to develop the novel model for paddy leaf disease recognition using the hybrid deep learning. Initially, the input paddy leaf images are collected from standard sources that undergo filtering and contrast enhancement approaches. Further, the segmentation of the abnormal region of the paddy leaf is done by “adaptive K‐means clustering.” This is also accomplished by the Fitness Sorted‐Shark Smell Optimization (FS‐SSO). With the segmented images, the recognition of the disease is performed by the hybrid deep learning using the Resnet and YOLO classifier. As the modification, the fully connected layer of the ResNet model is replaced by the YOLO classifier for disease recognition. The significant parameters of the hybrid deep learning are optimized by the FS‐SSO for attaining the high recognition rate. Experimental analysis is performed for computing the performance metrics and the accuracy of the classification for evaluating the efficiency of the suggested method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
无花果应助机灵白桃采纳,获得10
23秒前
李剑鸿完成签到,获得积分10
26秒前
38秒前
JY发布了新的文献求助10
44秒前
59秒前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
123456789发布了新的文献求助10
1分钟前
1分钟前
hjp发布了新的文献求助10
1分钟前
1分钟前
归尘应助科研通管家采纳,获得100
1分钟前
1分钟前
hjp完成签到,获得积分10
1分钟前
2分钟前
2分钟前
ANNY完成签到,获得积分10
2分钟前
吃个橘子发布了新的文献求助10
2分钟前
隐形曼青应助Yingkun_Xu采纳,获得10
2分钟前
吃个橘子完成签到,获得积分20
2分钟前
charih完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
赘婿应助清修采纳,获得10
2分钟前
Annabelame完成签到,获得积分10
2分钟前
wewewew发布了新的文献求助10
2分钟前
3分钟前
3分钟前
顺心的安珊完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Hillson完成签到,获得积分10
3分钟前
清修发布了新的文献求助10
3分钟前
3分钟前
高速旋转老沁完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244161
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483