清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images

树(集合论) 基本事实 分割 计算机科学 城市林业 人工智能 树冠 遥感 地理 模式识别(心理学) 天蓬 数学 林业 数学分析 考古
作者
Kwanghun Choi,Wontaek Lim,Byungwoo Chang,Jinah Jeong,Inyoo Kim,Chan‐Ryul Park,Dongwook W. Ko
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:190: 165-180 被引量:51
标识
DOI:10.1016/j.isprsjprs.2022.06.004
摘要

Tree species and canopy structural profile (‘tree profile’) are among the most critical environmental factors in determining urban ecosystem services such as climate and air quality control from urban trees. To accurately characterize a tree profile, the tree diameter, height, crown width, and height to the lowest live branch must be all measured, which is an expensive and time-consuming procedure. Recent advances in artificial intelligence aids to efficiently and accurately measure the aforementioned tree profile parameters. This can be particularly helpful if spatially extensive and accurate street-level images provided by Google (‘streetview’) or Kakao (‘roadview’) are utilized. We focused on street trees in Seoul, the capital city of South Korea, and suggested a novel approach to create a tree profile and inventory based on deep learning algorithms. We classified urban tree species using the YOLO (You Only Look Once), one of the most popular deep learning object detection algorithms, which provides an uncomplicated method of creating datasets with custom classes. We further utilized semantic segmentation algorithm and graphical analysis to estimate tree profile parameters by determining the relative location of the interface of tree and ground surface. We evaluated the performance of the model by comparing the estimated tree heights, diameters, and locations from the model with the field measurements as ground truth. The results are promising and demonstrate the potential of the method for creating urban street tree profile inventory. In terms of tree species classification, the method showed the mean average precision (mAP) of 0.564. When we used the ideal tree images, the method also reported the normalized root mean squared error (NRMSE) for the tree height, diameter at breast height (DBH), and distances from the camera to the trees as 0.24, 0.44, and 0.41.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
huazhangchina完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
Slemon完成签到,获得积分10
1分钟前
充电宝应助gszy1975采纳,获得10
1分钟前
1分钟前
萨尔莫斯完成签到,获得积分10
1分钟前
yanghuige发布了新的文献求助10
1分钟前
科研通AI5应助yanghuige采纳,获得10
1分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
2分钟前
3分钟前
ys发布了新的文献求助10
3分钟前
紫熊完成签到,获得积分10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
3分钟前
SCI信手拈来完成签到,获得积分10
4分钟前
4分钟前
gszy1975发布了新的文献求助10
4分钟前
大雪封山完成签到,获得积分10
5分钟前
lanxinge完成签到 ,获得积分20
7分钟前
Boren完成签到,获得积分10
8分钟前
8分钟前
9分钟前
乐观怀亦发布了新的文献求助10
9分钟前
Kevin发布了新的文献求助10
9分钟前
9分钟前
沿途有你完成签到 ,获得积分10
10分钟前
ys完成签到 ,获得积分10
10分钟前
666发布了新的文献求助10
11分钟前
大气的莆完成签到 ,获得积分10
11分钟前
fa完成签到,获得积分10
11分钟前
GGBond完成签到 ,获得积分10
11分钟前
mellow完成签到,获得积分10
12分钟前
12分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819950
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418862
捐赠科研通 3081189
什么是DOI,文献DOI怎么找? 1695009
邀请新用户注册赠送积分活动 814791
科研通“疑难数据库(出版商)”最低求助积分说明 768522