自噬
mTORC1型
血管内皮生长因子
免疫印迹
炎症
促炎细胞因子
转染
急性胰腺炎
内分泌学
化学
内科学
医学
生物
细胞凋亡
细胞生物学
细胞培养
PI3K/AKT/mTOR通路
信号转导
生物化学
血管内皮生长因子受体
遗传学
基因
作者
Yaping Wang,Zhao Zhang,Tang Li,Zhu Zhang
出处
期刊:PubMed
日期:2022-04-25
卷期号:74 (2): 225-236
摘要
This study was to investigate the changes of autophagy in pancreatic tissue cells from hyperlipidemic acute pancreatitis (HLAP) rats and the molecular mechanism of autophagy to induce inflammatory injury in pancreatic tissue cells. Male Sprague Dawley (SD) rats were intraperitoneally injected with caerulein to establish acute pancreatitis (AP) model and then given a high fat diet to further prepare HLAP model. The HLAP rats were treated with autophagy inducer rapamycin or inhibitor 3-methyladenine. Pancreatic acinar (AR42J) cells were treated with caerulein to establish HLAP cell model. The HLAP cell model were treated with rapamycin or transfected with vascular endothelial growth factor (VEGF) siRNA. The inflammatory factors in serum and cell culture supernatant were detected by ELISA method. The histopathological changes of pancreatic tissue were observed by HE staining. The changes of ultrastructure and autophagy in pancreatic tissue were observed by electron microscopy. The expression levels of Beclin-1, microtubule- associated protein light chain 3-II (LC3-II), mammalian target of rapamycin complex 1 (mTORC1), and VEGF were measured by immunohistochemistry and Western blot. The results showed that, compared with control group, the autophagy levels and inflammatory injury of pancreatic tissue cells from HLAP model rats were obviously increased, and these changes were aggravated by rapamycin treatment, but alleviated by 3-methyladenine treatment. In HLAP cell model, rapamycin aggravated the autophagy levels and inflammatory injury, whereas VEGF siRNA transfection increased mTORC1 protein expression, thus alleviating the autophagy and inflammatory injury of HLAP cell model. These results suggest that VEGF-induced autophagy plays a key role in HLAP pancreatic tissue cell injury, and interference with VEGF-mTORC1 pathway can reduce the autophagy levels and alleviate the inflammatory injury. The present study provides a new target for prevention and treatment of HLAP.
科研通智能强力驱动
Strongly Powered by AbleSci AI