正交晶系
居里温度
离子半径
公式单位
磁电阻
钙钛矿(结构)
四方晶系
材料科学
结晶学
铁磁性
凝聚态物理
离子键合
晶体结构
分析化学(期刊)
化学
离子
磁场
物理
有机化学
色谱法
量子力学
作者
С. В. Труханов,А. В. Труханов,Cristian E. Botez,A. Adair,H. Szymczak,R. Szymczak
标识
DOI:10.1088/0953-8984/19/26/266214
摘要
The crystal structure and magnetotransport properties of the A-site ionic ordered state in Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0, 0.025) have been investigated. It is shown that such a state can be formed in complex manganites with cation ratios [Formula: see text] by using a 'two-step' reduction-reoxidization method. The parent A-site ionic disordered Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0) compound is an orthorhombic (SG = Imma, Z = 4) ferromagnet with Curie temperature T(C)≈173 K and ground-state spontaneous magnetic moment σ(S)∼3.70 µ(B)/f.u. It exhibits two metal-insulator transitions, at T(I)∼128 K and T(II)∼173 K, as well as two peaks of magnetoresistance ∼74% and ∼79% in a field of 50 kOe. The parent A-site ionic disordered Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0) sample used in our studies has an average grain size [Formula: see text]. Successive annealing of this sample in vacuum P[O(2)]≈10(-4) Pa and then in air at T = 800 °C leads to the destruction of its initial grain structure and to its chemical separation into two phases: (i) oxygen stoichiometric A-site ordered PrBaMn(2)O(6) with a tetragonal (SG = P4/mmm, Z = 2) perovskite-like unit cell and Curie temperature T(C)≈313 K and (ii) oxygen superstoichiometric A-site disordered Pr(0.90)Ba(0.10)MnO(3.05) with an orthorhombic (SG = Pnma, Z = 4) perovskite-like unit cell and Curie temperature T(C)≈133 K. This processed sample has a spontaneous magnetic moment σ(S)∼2.82 µ(B)/f.u. in its ground state, and σ(S)∼0.59 μ(B)/f.u. at T∼300 K. It also exhibits a magnetoresistance of ∼14% at ∼313 K in a field of 50 kOe. This processed sample has a reduced average grain size [Formula: see text] nm. The two magnetic phases, Pr(0.90)Ba(0.10)MnO(3.05) and PrBaMn(2)O(6), are exchange-coupled. For Pr(0.90)Ba(0.10)MnO(3.05) the temperature hysteresis is ∼22 K in a field of 10 Oe and ∼5 K in a field of 1 kOe. The observed magnetic properties are interpreted in terms of chemical phase separation, grain size, and A-site ionic ordering effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI