增广拉格朗日法
卡鲁什-库恩-塔克条件
迭代函数
数学
正规化(语言学)
应用数学
拉格朗日
趋同(经济学)
功能(生物学)
变量(数学)
序列(生物学)
数学优化
收敛速度
迭代法
计算机科学
数学分析
生物
频道(广播)
进化生物学
人工智能
经济
遗传学
经济增长
计算机网络
作者
Radu Ioan Boţ,Dang‐Khoa Nguyen
出处
期刊:Cornell University - arXiv
日期:2018-01-06
被引量:8
摘要
We propose two numerical algorithms for minimizing the sum of a smooth function and the composition of a nonsmooth function with a linear operator in the fully nonconvex setting. The iterative schemes are formulated in the spirit of the proximal and, respectively, proximal linearized alternating direction method of multipliers. The proximal terms are introduced through variable metrics, which facilitates the derivation of proximal splitting algorithms for nonconvex complexly structured optimization problems as particular instances of the general schemes. Convergence of the iterates to a KKT point of the objective function is proved under mild conditions on the sequence of variable metrics and by assuming that a regularization of the associated augmented Lagrangian has the Kurdyka-Lojasiewicz property. If the augmented Lagrangian has the Lojasiewicz property, then convergence rates of both augmented Lagrangian and iterates are derived.
科研通智能强力驱动
Strongly Powered by AbleSci AI