Multiscale Simulation Method for Quantitative Prediction of Surface Wettability at the Atomistic Level

润湿 材料科学 曲面(拓扑) 复合材料 数学 几何学
作者
Suji Gim,Hyung‐Kyu Lim,Hyungjun Kim
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:9 (7): 1750-1758 被引量:29
标识
DOI:10.1021/acs.jpclett.8b00466
摘要

The solid–liquid interface is of great interest because of its highly heterogeneous character and its ubiquity in various applications. The most fundamental physical variable determining the strength of the solid–liquid interface is the solid–liquid interfacial tension, which is usually measured according to the contact angle. However, an accurate experimental measurement and a reliable theoretical prediction of the contact angle remain lacking because of many practical issues. Here, we propose a first-principles-based simulation approach to quantitatively predict the contact angle of an ideally clean surface using our recently developed multiscale simulation method of density functional theory in classical explicit solvents (DFT-CES). Using this approach, we simulate the surface wettability of a graphene and graphite surface, resulting in a reliable contact angle value that is comparable to the experimental data. From our simulation results, we find that the surface wettability is dominantly affected by the strength of the solid–liquid van der Waal's interaction. However, we further elucidate that there exists a secondary contribution from the change of water–water interaction, which is manifested by the change of liquid structure and dynamics of interfacial water layer. We expect that our proposed method can be used to quantitatively predict and understand the intriguing wetting phenomena at an atomistic level and can eventually be utilized to design a surface with a controlled hydrophobic(philic)ity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SciGPT应助刘老板采纳,获得10
1秒前
asdfg发布了新的文献求助10
1秒前
万事都灵发布了新的文献求助10
2秒前
王宏伟完成签到,获得积分10
3秒前
隐形曼青应助鹏大鹏采纳,获得10
3秒前
tigebnb完成签到,获得积分10
4秒前
隐形又菱发布了新的文献求助30
6秒前
Ava应助wrng采纳,获得10
7秒前
7秒前
7秒前
8秒前
9秒前
10秒前
10秒前
di完成签到,获得积分20
12秒前
丫丫发布了新的文献求助10
12秒前
我叫语文家完成签到 ,获得积分10
12秒前
kulei发布了新的文献求助10
13秒前
木容发布了新的文献求助10
14秒前
阿辉发布了新的文献求助20
14秒前
123发布了新的文献求助10
14秒前
刘老板发布了新的文献求助10
15秒前
冰千蕙发布了新的文献求助10
15秒前
Jasper应助aaa采纳,获得10
16秒前
di发布了新的文献求助10
16秒前
16秒前
桐桐应助老阳采纳,获得10
17秒前
psy学子完成签到 ,获得积分10
17秒前
招财进宝牛哞哞完成签到,获得积分10
18秒前
18秒前
18秒前
Lisianthus完成签到,获得积分20
18秒前
走四方发布了新的文献求助10
19秒前
传奇3应助123采纳,获得10
19秒前
Winfrednano完成签到,获得积分10
20秒前
20秒前
LMM完成签到,获得积分10
20秒前
一一完成签到,获得积分10
22秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897263
求助须知:如何正确求助?哪些是违规求助? 3441198
关于积分的说明 10820391
捐赠科研通 3166145
什么是DOI,文献DOI怎么找? 1749192
邀请新用户注册赠送积分活动 845203
科研通“疑难数据库(出版商)”最低求助积分说明 788492