数学
行波
克莱恩-戈登方程
非线性系统
产品(数学)
数学物理
数学分析
功能(生物学)
几何学
物理
量子力学
进化生物学
生物
作者
A. Paiva,C. O. R. Sarrico
标识
DOI:10.57262/die/1504231277
摘要
The present paper concerns the study of distributional travelling waves in models ruled by the nonlinear Klein-Gordon equation $u_{tt}-c^{2}u_{xx} =\phi(u)$, where $c>0$ is a real number and $\phi$ is an entire function which takes real values on the real axis. For this purpose, we use a product of distributions that extends the meaning of $\phi(u)$ to certain distributions $u$ and that allows us to define a solution concept consistent with the classical solution concept. The phi-four equation and the sine-Gordon equation are examined as particular cases.
科研通智能强力驱动
Strongly Powered by AbleSci AI