细胞外基质
细胞生物学
牙周纤维
Wnt信号通路
再生(生物学)
纤维连接蛋白
离体
材料科学
间充质干细胞
组织工程
体内
生物
生物医学工程
信号转导
医学
牙科
生物技术
作者
Ji‐Chun Zhang,Zhong‐Chen Song,Yiru Xia,Rong Shu
摘要
Large numbers of viable cells cannot be obtained from periodontal ligament tissues of patients with periodontitis. Therefore, it is imperative to establish an ex vivo environment that can support cell proliferation and delay senescence. Here, we have successfully reconstructed a native extracellular matrix (ECM), derived from early-passage human periodontal ligament cells (PDLCs) using the NH4 OH/Triton X-100 protocol. The ECM was investigated by scanning electron microscopy and immunostaining for specific ECM proteins (collagen I and fibronectin). Late-passage ECM-expanded PDLCs exhibited a much higher proliferation index and lower levels of reactive oxygen species (ROS), confirmed by the increased expression of pluripotent markers and enhanced osteogenic capacity. Interestingly, the Wnt pathway was suppressed during the ECM expansion-mediated increase in pluripotency, but was activated in an osteogenic differentiation environment, as confirmed by treatment with the XAV-939 β-catenin inhibitor or the SP600125 c-Jun N-terminal kinase (JNK) inhibitor. Cell sheets formed by ECM-expanded PDLCs exhibited an enhanced periodontal tissue regeneration capacity compared to those formed on tissue culture polystyrene (TCP) surfaces in vivo. Taken together, the cell-free ECM provides a tissue-specific cell niche for the ex vivo expansion of PDLCs while retaining stemness and osteogenic potential, partially via the Wnt pathway. This represents a promising matrix for future applications in periodontal tissue regeneration therapy. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 272-284, 2018.
科研通智能强力驱动
Strongly Powered by AbleSci AI