Neural-Network-Assisted Optimization of Wine Blending Based on Sensory Analysis

葡萄酒 人工神经网络 感觉系统 计算机科学 过程(计算) 集合(抽象数据类型) 基础(拓扑) 感官分析 还原(数学) 人工智能 模式识别(心理学) 数学 统计 食品科学 化学 心理学 数学分析 操作系统 认知心理学 几何学 程序设计语言
作者
Jordan G. Ferrier,David E. Block
出处
期刊:American Journal of Enology and Viticulture [American Society for Enology and Viticulture]
卷期号:52 (4): 386-395 被引量:41
标识
DOI:10.5344/ajev.2001.52.4.386
摘要

Because common sensory characteristics of wine are frequently the result of many different compounds with varying perception thresholds, a nonlinear relationship often exists between the desired target attributes of a final blend and the individual attributes of the base wines, thus complicating the blending process. To address this complication, a blending optimization method has been developed that uses artificial neural networks to model the potentially nonlinear response of the blending based on sensory data from the base wines and a limited number of blends. This method has been developed and verified by constructing a series of 24 wines from three base wines. Each wine was profiled by descriptive analysis with a trained panel, and the sensory data was modeled with an artificial neural network. After choosing specific target attributes for the final blend, an optimization algorithm was employed to predict the optimal blend for this set of goals. Optimal blends chosen with this methodology had sensory characteristics close to the goal characteristics and to experimental blends with similar composition. Reduction of the training data to a single experienced judge and elimination of 30% of the trial blends did not change the optimal blend identified significantly (less than 2% difference in any fraction). A reduction of 50% of the trial blends led to changes of up to 11%, demonstrating that caution must be exercised in reducing the data collected for blending.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhonglv7应助天气晴朗采纳,获得10
刚刚
庞mou发布了新的文献求助10
1秒前
独特的莫言完成签到,获得积分10
1秒前
小曹医生发布了新的文献求助10
1秒前
2秒前
sujiaoziemo完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
FashionBoy应助tong采纳,获得10
3秒前
领导范儿应助manve采纳,获得10
4秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
cnnnnn发布了新的文献求助10
7秒前
9秒前
落后的忆翠完成签到,获得积分10
9秒前
万能图书馆应助开朗大地采纳,获得10
10秒前
郭鑫发布了新的文献求助10
10秒前
10秒前
11秒前
牛诗悦完成签到,获得积分10
11秒前
12秒前
大模型应助oopsreach采纳,获得10
12秒前
王王发布了新的文献求助10
12秒前
Jue完成签到,获得积分10
12秒前
大茗星发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
大模型应助Hey采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
asdfahjgsfd发布了新的文献求助30
14秒前
天天快乐应助晨妍采纳,获得10
15秒前
15秒前
16秒前
rrr发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668611
求助须知:如何正确求助?哪些是违规求助? 4891907
关于积分的说明 15125212
捐赠科研通 4827584
什么是DOI,文献DOI怎么找? 2584674
邀请新用户注册赠送积分活动 1538485
关于科研通互助平台的介绍 1496799