Mending a Broken Heart: The Role of Sarcospan in Duchenne Muscular Dystrophy–Associated Cardiomyopathy

医学 杜氏肌营养不良 心肌病 心脏病学 肌营养不良 内科学 心力衰竭 肌营养不良蛋白 物理疗法
作者
Richard S. Vander Heide
出处
期刊:Journal of the American Heart Association [Ovid Technologies (Wolters Kluwer)]
卷期号:4 (12) 被引量:2
标识
DOI:10.1161/jaha.115.002928
摘要

HomeJournal of the American Heart AssociationVol. 4, No. 12Mending a Broken Heart: The Role of Sarcospan in Duchenne Muscular Dystrophy–Associated Cardiomyopathy Open AccessEditorialPDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citations ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toOpen AccessEditorialPDF/EPUBMending a Broken Heart: The Role of Sarcospan in Duchenne Muscular Dystrophy–Associated Cardiomyopathy Richard S. Vander Heide, MD, PhD Richard S. Vander HeideRichard S. Vander Heide *Correspondence to: Richard Vander Heide, MD, PhD, Department of Pathology, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112. E‐mail: E-mail Address: [email protected] Department of Pathology, , Louisiana State University Health Science Center, , New Orleans, , LA Search for more papers by this author Originally published23 Dec 2015https://doi.org/10.1161/JAHA.115.002928Journal of the American Heart Association. 2015;4:e002928IntroductionDuchenne muscular dystrophy (DMD) is the most severe and most common form of X‐linked muscular diseases. It has been known for over 25 years that DMD is caused by a gene mutation leading to the near total absence of functional dystrophin protein. Transcription of the gene is controlled by 3 independent promoters of which the muscle (M) promoter drives high expression of dystrophin in skeletal and cardiac muscle.1 Dystrophin is associated with a cytoskeletal lattice commonly referred to as a costamere. It has been shown that dystrophin, through the membrane‐spanning region, physically links the extracellular matrix to the actin cytoskeleton.2 The costameres physically couple the sarcolemmal membrane with the Z disk region and as a result, dystrophin stabilizes the sarcolemma against the mechanical forces produced during the contraction process.3 The importance of dystrophin in the structural support of the sarcolemma has been clearly shown in data from the mdx mouse, a model of DMD. In this mouse, dystrophin and/or select dystrophin domains have been deleted and the resulting striated muscle cells demonstrate markedly increased fragility, disorganization of the costameres, and necrosis.3 This knowledge led to the “mechanical hypothesis” in which the lack of dystrophin leads to increased membrane fragility and the progressive cellular necrosis characteristic of the disease. Studies published in the 1990s using cultured myotubes and isolated mature muscle fibers showed that DMD and mdx myotubes were more susceptible to hypo‐osmotic shock than control cells, indicating that mdx‐derived cells were fragile and prone to mechanical injury.4, 5 Interestingly, the membrane fragility/mechanical injury hypothesis had first been hypothesized in the 1980s in experimental model systems as the underlying mechanism of ischemia/reperfusion injury as well as the calcium paradox.6, 7 Subsequent groups confirmed that inhibition of contraction at the onset of reperfusion prevented and/or substantially reduced cell death in experimental systems.At the subsarcolemmal location, dystrophin is incorporated into a larger complex of proteins known as the dystrophin‐associated protein complex containing dystrophin, dystroglycans, sarcoglycans, sarcospan, dystrobrevins, and syntrophin, which is commonly referred to as the dystroglycan complex (DGC).1 In addition to its role in structural support of the sarcolemmal membrane, the DGC has been proposed to constitute a potential cellular signaling complex by virtue of the scaffolding nature of dystrophin and the association of many putative cellular signaling molecules into the DGC, raising the possibility that the DGC may be capable of transmitting extracellular‐mediated signals to the inside of the cell through the cytoskeleton. Indeed, β‐dystroglycan has been shown to interact with mitogen activated protein kinase (MEK) and extracellular signal‐regulated kinase (ERK), suggesting that dystroglycan can influence the ERK‐mitogen activated protein kinase (MAPK) cascade through such a scaffolding interaction.8 Laminin also interacts with dystroglycan and is capable of recruiting signaling complexes (eg, Grg2‐Sos1) to dystroglycan.9 Recent experimental studies from Vander Heide have shown that cytoskeletal‐based signaling is important in cellular protection in cardiac ischemia–reperfusion injury.10 These studies imply that the necrosis characteristic of DMD may be in part due to interruption and/or quenching of important cell survival signals involving the proteins present in the DGC complex.The sarcoglycan complex is composed of 4 isoforms (α, β, γ, δ) and sarcospan (SSPN). SSPN consists of 4 membrane‐spanning segments, while sarcoglycans contain 1 membrane‐spanning region.3, 11 It has been suggested that the function of the sarcoglycan complex is to strengthen the interaction of β‐dystroglycan with α‐dystroglycan and dystrophin.12 Mutations in any of the 4 transmembrane proteins result in autosomal recessive limb‐girdle muscular dystrophy.1, 11 Several studies on sarcoglycans have yielded clues that they may also play an important role in intracellular signal transduction.13 In addition, lack of δ‐sarcoglycan has been shown to reduce neuronal nitric oxide synthase levels as well as displacing it from the sarcolemma, potentially resulting in loss of vasodilatory functions in the smooth muscle cells of vascular structures.14 Crosbie‐Watson has shown that SSPN improves cell surface expression at 3 important major laminin‐binding complexes: the DGC, the utrophin–glycoprotein complex, and at 7β1‐integrin.15 Since utrophin–glycoprotein is homologous to the DGC and α7β1‐integrin is the major integrin expressed in adult skeletal muscle, utrophin–glycoprotein and α7β1‐integrin have been proposed as compensatory complexes for the loss of the DGC complex typically seen in DMD.11 Furthermore, it has been shown that transgenic expression of SSPN causes increased levels of dystrophin at the sarcolemma in normal skeletal muscle and increased levels of utrophin–glycoprotein and α7β1D integrin at the sarcolemma, which restored laminin‐binding and ameliorated the skeletal muscle necrosis.13, 16In this issue of JAHA, Parvatiyar et al 17 extend this interesting story into cardiac muscle to determine whether the same mechanisms may underlie the cardiac dysfunction characteristic of DMD. They investigated baseline structural and functional consequences of SSPN ablation in mouse cardiac muscle and also determined whether transgenic overexpression of SSPN in the mdx mouse model would ameliorate the cardiac symptoms. The results show that mice lacking SSPN exhibited reduction of dystrophin levels, decreased sarcoglycan and integrin binding to the DGC, and reduction in laminin binding. Furthermore, SSPN‐null mice showed cardiac enlargement, increased myocyte hypertrophy, and increased interstitial fibrosis in response to an acute β‐adrenergic challenge. The authors interpret the results to indicate that SSPN plays an important role in the regulation of sarcolemmal expression of laminin‐binding complexes. However, it is also apparent that loss of SSPN and the associated changes in laminin complex binding have effects on baseline cardiac structure and the response to acute adrenergic stress. The cause of the increased fibrosis in the SSPN‐null mice is not clear but could be due to either vasospasm secondary to loss of δ‐sarcoglycan in the vasculature or alternatively, due to transient episodes of ischemia secondary to adrenergic stimulation superimposed on mechanically fragile cells.Transgenic overexpression of human SSPN in the DMD (mdxTG) mouse improved adhesion, sarcolemmal structure, and cardiac function supporting a critical role for SSPN in protecting against both transient and chronic myocardial injury. Although these data are provocative, the results warrant further investigation. The hypertrophy measured in the SSPN‐null mice in response to isoproterenol is due to activation of hypertrophic signaling pathways. However, the hypertrophic response is likely complex and may involve activation of multiple signaling pathways. Secondly, the authors provide convincing data that the reduction in cell death/increased sarcolemmal stability is due at least in part to compensation provided by the increased expression of utrophin and β1D integrin, transmembrane proteins involved with extracellular matrix attachment. However, as discussed above, there is ample and intriguing evidence that cytoskeletal‐based signaling can activate survival pathways, thereby reducing cell death. Given that DGC contains many signaling proteins, it is possible that at least a component of the increased cell fragility/cell death seen in the SSPN‐null mice, mdx mice, and even DMD may be due to interruption of critical cytoskeletal‐dependent cell survival signaling. The role of SSPN in cardiac muscle is nascent and likely to be complex. The authors cite a Genome Wide Association Study (GWAS) study that shows polymorphisms in the SSPN locus 12p.11.2 are positively correlated with increased left ventricular mass in several families, raising the possibility that SSPN variants may affect other cardiomyopathies related to mutations in other cytoskeletal and/or contractile genes. It is also possible that SSPN variants play a role in cardiac disease resulting from mutations in proteins associated with the DGC/integrins or even heart failure resulting from acquired myocardial diseases such as ischemic heart disease. Such possibilities are intriguing and deserve more investigation.The cardiac disease in DMD is progressive and leads to ventricular dysfunction, dilatation, and failure. Pathologic changes described in autopsied human hearts are nonspecific and similar to those described in the SSPN‐null mice and include mixtures of myocyte hypertrophy, atrophy, and fibrosis. The only current therapy regimens consist of corticosteroids; however, more than 25% of DMD patients are not treated with corticosteroids due to intolerance of the side effects or lack of response.18 Clearly there is need for more effective therapies to treat DMD. The unique biochemical properties of SSPN have made it an attractive target for muscular dystrophies. Early preclinical and clinical trials indicate that gene therapy via injection of recombinant adeno‐associated viral vectors may be a viable approach, at least for skeletal muscle disease.19 However, it is less clear whether such an approach would be viable for treatment of the respiratory failure (diaphragm) and/or cardiac failure often associated with the fatal consequences of DMD. The study by Parvatiyar et al has provided new and provocative results indicating that alternative therapies for DMD and the other muscular dystrophies are possible through selective manipulation of cytoskeletal proteins and encourages more research into the area of targeted gene therapy.DisclosuresNone.Footnotes*Correspondence to: Richard Vander Heide, MD, PhD, Department of Pathology, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112. E‐mail: [email protected]eduThe opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.References1 Constantin B. Dystrophin complex functions as a scaffold for signaling proteins. Biochim Biophys Acta. 2013; 1838:635–642.CrossrefMedlineGoogle Scholar2 Ervasti J, Campbell K. Membrane organization of the dystrophin‐glycoprotein complex. Cell. 1991; 66:1121–1131.CrossrefMedlineGoogle Scholar3 Ervasti JM. Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta. 2006; 1772:108–117.CrossrefMedlineGoogle Scholar4 Menke A, Jockusch A. Decreased osmotic stability of dystrophin‐less muscle cells from mdx mouse. Nature. 1991; 349:69–71.CrossrefMedlineGoogle Scholar5 Menke A, Jockusch H. Extent of shock‐induced membrane leakage in human and mouse myotubes depends on dystrophin. J Cell Sci. 1995; 108:727–733.CrossrefMedlineGoogle Scholar6 Ganote CE, Vander Heide RS. Importance of mechanical factors in ischemic and reperfusion injury. In: Piper HM, ed. Pathophysiology of Severe Ischemic Myocardial Injury. The Netherlands: Kluwer Academic Publ., BV Dordrecht; 1989:337–355.Google Scholar7 Vander Heide RS, Ganote CE. Caffeine‐induced myocardial injury in calcium‐free perfused rat hearts. Am J Pathol. 1985; 118:55–65.MedlineGoogle Scholar8 Oak S, Zhou Y, Jarrett H. Skeletal muscle signaling pathway through the dsytrophin glycoprotein complex and Rac1. J Biol Chem. 2003; 278:39287–39295.CrossrefMedlineGoogle Scholar9 Spence A, Dhillon A, James M, Winder S. Dystroglycan, a scaffold for the ERK‐MAP kinase cascade. EMBO Rep. 2004; 5:484–489.CrossrefMedlineGoogle Scholar10 Perricone A, Bivona B, Jackson F, Vander Heide RS. Conditional knockout of myocyte focal adhesion kinase abrogates ischemic preconditioning in adult murine hearts. J Am Heart Assoc. 2013; 2:e000457 doi: 10.1161/JAHA.113.000457.LinkGoogle Scholar11 Marshall J, Kwok Y, McMorran B, Baum L, Crosbie‐Watson R. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J. 2013; 280:4210–4229.CrossrefMedlineGoogle Scholar12 Ozawa E, Mizuno Y, Hagiwara Y, Sasoka T, Yoshida M. Molecular and cell biology of the sarcoglycan complex. Muscle Nerve. 2005; 32:563–576.CrossrefMedlineGoogle Scholar13 Marshall J, Holmberg J, Chou E, Ocampo A, Oh J, Lee J, Peter AK, Martin PT, Crosbie‐Watson R. Sarcospan‐dependent Akt activation is required for utrophin expression and muscle regeneration. J Cell Biol. 2012; 197:1009–1027.CrossrefMedlineGoogle Scholar14 Crosbie R, Barresi R, Campbell K. Loss of sarcolemma nNOS in sarcoglycan‐deficient muscle. FASEB J. 2002; 16:1786–1791.CrossrefMedlineGoogle Scholar15 Marshall J, Crosbie‐Watson R. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle. 2013; 3:1.CrossrefMedlineGoogle Scholar16 Peter A, Ko C, Kim M, Hsu N, Ouchi N, Rhie S, Izumiya Y, Zeng L, Walsh K, Crosbie R. Myogenic Akt signaling upregulates the utrophin‐glycoprotein complex and promotes sarcolemma stability in muscular dystrophy. Hum Mol Genet. 2009; 18:318–327.CrossrefMedlineGoogle Scholar17 Parvatiyar MS, Marshall JL, Nguyen RT, Jordan MC, Richardson VA, Roos KP, Crosbie‐Watson RH. Sarcospan regulates cardiac isoproterenol response and prevents Duchenne muscular dystrophy–associated cardiomyopathy. J Am Heart Assoc. 2015; 4:e002481 doi: 10.1161/JAHA.115.002481.LinkGoogle Scholar18 Mavrogeni S, Markousis‐Mavrogenis G, Papavasiliou A, Kolovou G. Cardiac involvement in Duchenne and Becker muscular dystrophy. World J Cardiol. 2015; 7:410–414.CrossrefMedlineGoogle Scholar19 Bengtsson N, Seto J, Hall J, Chamberlain J, Odom G. Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum Mol Genet. 2015. pii: ddv420 [Epub ahead of print].MedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsCited By Singh S, Singh T, Kunja C, Dhoat N and Dhania N (2021) Gene-editing, immunological and iPSCs based therapeutics for muscular dystrophy, European Journal of Pharmacology, 10.1016/j.ejphar.2021.174568, 912, (174568), Online publication date: 1-Dec-2021. Spicher C, Schneider R, Mönnings P, Schneider-Gold C, Kallenberg D, Cevik B, Lukas C, Gold R and Krogias C (2018) Mechanical thrombectomy in a young stroke patient with Duchenne muscular dystrophy, Therapeutic Advances in Neurological Disorders, 10.1177/1756286418759188, 11, (175628641875918), Online publication date: 1-Jan-2018. December 1, 2015Vol 4, Issue 12Article InformationMetrics Copyright © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley BlackwellThis is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.https://doi.org/10.1161/JAHA.115.002928PMID: 26702081 Originally publishedDecember 23, 2015 Keywordsmuscle diseasecytoskeletal dynamicsEditorialsDuchenne muscular dystrophy cardiomyopathyPDF download SubjectsContractile FunctionGene TherapyMechanismsPathophysiology
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱多多完成签到,获得积分10
5秒前
鸣鸣完成签到,获得积分10
8秒前
12秒前
张困困发布了新的文献求助10
15秒前
合适的孤丝完成签到 ,获得积分10
24秒前
关中人完成签到,获得积分10
26秒前
刺猬完成签到,获得积分10
27秒前
Jack完成签到 ,获得积分10
33秒前
信封完成签到 ,获得积分10
40秒前
熊仔一百完成签到 ,获得积分10
40秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
41秒前
42秒前
42秒前
eternal_dreams完成签到 ,获得积分10
48秒前
丁三问应助anna008采纳,获得50
49秒前
duxiao完成签到 ,获得积分10
50秒前
xxcvvv完成签到,获得积分0
51秒前
有魅力的诗柳完成签到 ,获得积分10
51秒前
杰行天下完成签到,获得积分10
54秒前
hutian完成签到,获得积分10
56秒前
1分钟前
lurenjia009完成签到,获得积分10
1分钟前
风趣书包完成签到 ,获得积分10
1分钟前
科研汪完成签到,获得积分10
1分钟前
Zzzz完成签到 ,获得积分10
1分钟前
shiney完成签到 ,获得积分10
1分钟前
tcy完成签到,获得积分10
1分钟前
mailgo完成签到,获得积分10
1分钟前
1分钟前
打工是不可能打工的完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
乃惜完成签到,获得积分10
1分钟前
碧蓝的涵菡完成签到,获得积分10
1分钟前
雨天发布了新的文献求助10
1分钟前
我是老大应助张困困采纳,获得10
1分钟前
racill完成签到 ,获得积分10
1分钟前
公西冥幽完成签到 ,获得积分0
1分钟前
1分钟前
圆圆完成签到 ,获得积分10
1分钟前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Psychological Warfare Operations at Lower Echelons in the Eighth Army, July 1952 – July 1953 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2425300
求助须知:如何正确求助?哪些是违规求助? 2112463
关于积分的说明 5350561
捐赠科研通 1840453
什么是DOI,文献DOI怎么找? 915913
版权声明 561327
科研通“疑难数据库(出版商)”最低求助积分说明 489899