A unified phase-field theory for the mechanics of damage and quasi-brittle failure

脆性 材料科学 机械 领域(数学) 相(物质) 损伤力学 经典力学 物理 数学 结构工程 工程类 复合材料 量子力学 有限元法 纯数学
作者
Jian‐Ying Wu
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:103: 72-99 被引量:973
标识
DOI:10.1016/j.jmps.2017.03.015
摘要

Being one of the most promising candidates for the modeling of localized failure in solids, so far the phase-field method has been applied only to brittle fracture with very few exceptions. In this work, a unified phase-field theory for the mechanics of damage and quasi-brittle failure is proposed within the framework of thermodynamics. Specifically, the crack phase-field and its gradient are introduced to regularize the sharp crack topology in a purely geometric context. The energy dissipation functional due to crack evolution and the stored energy functional of the bulk are characterized by a crack geometric function of polynomial type and an energetic degradation function of rational type, respectively. Standard arguments of thermodynamics then yield the macroscopic balance equation coupled with an extra evolution law of gradient type for the crack phase-field, governed by the aforesaid constitutive functions. The classical phase-field models for brittle fracture are recovered as particular examples. More importantly, the constitutive functions optimal for quasi-brittle failure are determined such that the proposed phase-field theory converges to a cohesive zone model for a vanishing length scale. Those general softening laws frequently adopted for quasi-brittle failure, e.g., linear, exponential, hyperbolic and Cornelissen et al. (1986) ones, etc., can be reproduced or fit with high precision. Except for the internal length scale, all the other model parameters can be determined from standard material properties (i.e., Young’s modulus, failure strength, fracture energy and the target softening law). Some representative numerical examples are presented for the validation. It is found that both the internal length scale and the mesh size have little influences on the overall global responses, so long as the former can be well resolved by sufficiently fine mesh. In particular, for the benchmark tests of concrete the numerical results of load versus displacement curve and crack paths both agree well with the experimental data, showing validity of the proposed phase-field theory for the modeling of damage and quasi-brittle failure in solids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
turtle完成签到 ,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
shya85完成签到,获得积分20
7秒前
大可完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
MiaJ完成签到 ,获得积分10
16秒前
满集完成签到 ,获得积分10
17秒前
25秒前
务实的一斩完成签到 ,获得积分10
27秒前
mark33442完成签到,获得积分10
27秒前
博修完成签到,获得积分10
28秒前
知性的夏之完成签到 ,获得积分10
29秒前
贝贝完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
deng2025发布了新的文献求助10
31秒前
樱三枫完成签到,获得积分10
32秒前
hhh完成签到 ,获得积分20
37秒前
deng2025完成签到,获得积分10
39秒前
Ashley完成签到 ,获得积分10
40秒前
研友_VZG7GZ应助deng2025采纳,获得10
44秒前
量子星尘发布了新的文献求助10
45秒前
121卡卡完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
52秒前
苗条白枫完成签到 ,获得积分10
59秒前
萌萌完成签到 ,获得积分10
1分钟前
hhpxxy完成签到,获得积分10
1分钟前
谢陈完成签到 ,获得积分10
1分钟前
Joanne完成签到 ,获得积分10
1分钟前
kjwu发布了新的文献求助10
1分钟前
十二完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
陈叉叉完成签到 ,获得积分10
1分钟前
999完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5682097
求助须知:如何正确求助?哪些是违规求助? 5018658
关于积分的说明 15176617
捐赠科研通 4841606
什么是DOI,文献DOI怎么找? 2595343
邀请新用户注册赠送积分活动 1548406
关于科研通互助平台的介绍 1506505